Supplemental Materials:

Tunable polarization properties of charge, spin, and valley

in Janus VSiGeZ₄ (Z= N, P, As) monolayers

Ming-Yang Liu1*, Guang-Qiang Li1, Yao He2, and Kai Xiong3

¹Department of Physics and Electronic Science, Chuxiong Normal University, Chuxiong 675000, P. R. China

²Department of Physics, Yunnan University, Kunming 650091, P. R. China

³Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China

*Corresponding author: Ming-Yang Liu (E-mail: 18788549890@163.com)

 C_{11} C_{12} C_{66} VSi₂N₄ 509.186 154.833 177.176 VSi₂P₄ 207.034 47.595 79.720 44.758 65.222 VSi_2As_4 175.202 VGe_2N_4 409.370 136.996 136.187 VGe_2P_4 177.692 41.998 67.874 VGe_2As_4 142.668 54.071 44.298 VSiGeN₄ 459.149 144.078 157.536 VSiGeP₄ 194.442 57.213 68.614 VSiGeAs₄ 155.385 45.645 54.870

TABLE SI. The calculated elastic constants C_{ij} of VSi₂Z₄, VGe₂Z₄, and Janus VSiGeZ₄ in unit of N/m.

FIG. S1 The magnetization of VSiGeN₄ with temperature.

FIG. S2 Spin polarized band structure of VSi_2Z_4 by using GGA and GGA+U methods.

FIG.S3. Spin polarized band structure of VGe_2Z_4 by using GGA and GGA+U methods.

FIG. S4 Spin polarized band structure of the strained VSiGeN₄.

FIG. S5. (a)Spin polarized band structure and (b) band structure with SOC of the strained VSiGeN₄ by using HSE06 level.

FIG. S6 Band structure of VSiGeN₄ under compressive strain $\varepsilon = 0\%$, +1.05%, +1.45%, and +2%.

FIG. S7. Band structure of VSiGeP₄ under compressive strain $\varepsilon = -1\%$, -2.55%, -2.75%, and -3%.