Supporting information for "Terminal Crystalline Solid Solutions and T-X Phase Diagrams of Salicylic acid - 4-Hydroxybenzoic acid"

Yongjian Wang, Francesco Ricci, Brian Linehan and Fredrik L Nordstrom

Table 1. DSC results for SA-4HBA. Average values and standard deviations in parenthesis

X(4HBA)	DSC	Low temperature endotherm					High temperature endotherm				
	endotherms					1					
mol		T_{inset}	Tonset	T _{peak}	T _{offset}	Enthalpy	T _{inset}	T _{onset}	T_{peak}	T _{offset}	Enthalpy
AA/mol											
SA+4HBA											
		°C	°C	°C	°C	J/g	°C	°C	°C	°C	J/g
0.00	One						154.07	158.64	159.16	160.98	189.56
	endotherm						(0.08)	(0.006)	(0.09)	(0.23)	(4.21)
0.00062	One						15/ 25	158 57	150 1/	161.92	187.66
0.00002	endotherm						(0.56)	(0.02)	(0.04)	(0.79)	(1 56)
0.0011	One						152.11	158.53	159.18	161.15	182.65
	endotherm						(0.18)	(0.01)	(0.11)	90.23)	(3.81)
0.0022	One						153.49	158.46	159.21	161.56	179.59
	endotherm						(0.41)	(0.05)	(0.12)	(0.22)	(4.47)
0.0036	Two	141.07	142.73	143.76	144.72	0.79	151.43	158.07	159.04	160.80	172.00
	separated	(0.50)	(0.10)	(0.06)	(0.12)	(0.22)	(0.87)	(0.09)	(0.14)	(0.35)	(2.87)
	endotherms	. ,					. ,		. ,		, ,
0.0062	Two	140.97	142.14	143.20	144.78	1.76	148.87	157.69	158.73	160.58	167.83
	separated	(0.47)	(0.06)	(0.08)	(0.18)	(0.21)	(0.43)	(0.03)	(0.06)	(0.13)	(1.33)
	endotherms										
0.0153	Two	141.53	142.72	143.65	145.08 ¹	7.08	149.12	154.88	158.13	161.39	161.49
	partially	(0.13)	(0.12)	(0.04)	(0.14)	(0.57)	(1.03)	(2.13)	(0.12)	(2.26)	(8.28)
	overlapping										
	endotherms										
0.0303	Two	140.98	143.00	143.87	145.87 ¹	21.49		154.28	157.26	159.14	153.28
	partially	0.34)	(0.05)	(0.02)	(0.19)	(1.97)		(0.40)	(0.09)	(0.24)	(0.47)
	overlapping										
	endotherms										
0.0398	Two	140.35	143.68	143.87	145.66 ¹	30.91		152.80	156.34	158.64	144.72
	partially	(0.62)	(1.15)	(0.13)	(0.06)	(3.84)		(0.73)	(0.33)	(0.35)	(6.36)
	overlapping										
0.0546	endotherms	4 44 05	1 4 2 0 0	4 4 2 0 5	4.45.601	20.04		452.46	455.40	457.62	422.00
0.0516	IWO	141.05	143.00	143.95	145.60*	38.91		152.46	155.49	157.62	132.90
		(0.79)	(0.04)	(0.09)	(0.27)	(2.80)		(1.95)	(0.61)	(0.27)	(9.23)
	endotherms										
0.0964	Two	1/1 30	1/13 16	1// 37		7/ 30			153.65	156 18	97 7/
0.0504	nartially	(0.04)	(0.04)	(0.05)		(1.05)			(0.68)	(0 31)	(2 29)
	overlapping	(0.0.1)		(0.00)		(2.00)			(0.00)	(0101)	(2:20)
	endotherms										
0.2069	Two	141.65	143.27	144.68		132.31			148.58	149.99	42.45
	endotherms	(0.20)	(0.01)	(0.22)		(1.40)			(1.72)	(1.58)	(1.11)
	mostly										
	overlapping										
0.2241	Two	141.59	143.34	144.68		138.96				150.28	25.68
	endotherms	(0.47)	(0.06)	(0.29)		(2.54)				(1.18)	(16.40)
	mostly										
	overlapping										
0.2496	Two	140.22	143.40	144.48		164.54				151.59	12.47
	endotherms	(0.16)	(0.21)	(0.17)		(12.04)				(2.21)	(2.99)
	mostly										
	overlapping										
0.2745	Two	141.20	143.32	144.58		161.29				148.65	4.18
	endotherms	(0.24)	(0.09)	(0.20)		(0.71)				(0.80)	(5.12)
	mostly										
1	overiapping		1	1	1	1	1	1	1	1	

0.2939	Two	140.54	143.23	144.65		173.34				162.88	16.78
	partially	(0.14)	(0.01)	0.02)		(6.29)				(1.57)	(5.86)
	overlapping										
	endotherms										
0.3966	Two	140.08	143.28	144.58	147.84 ¹	146.62			165.46	174.54	28.93
	partially	(0.85)	(0.15)	(0.07)	(0.08)	(10.33)			(8.98)	(6.18)	(13.14)
	overlapping										
	endotherms										
0.4995	Two mostly	140.92	143.15	144.40	146.42 ¹	107.74		180.44	189.78	194.24	34.76
	separated	(0.13)	(0.05)	(0.21)	(0.41)	(2.26)		(10.25)	(8.68)	(7.93)	(4.74)
	endotherms										
0.6062	Two mostly	140.96	143.09	144.16	146.23 ¹	88.35		186.45	193.83	200.62	63.17
	separated	(0.41)	(0.02)	(0.06)	(0.13)	(3.12)		(8.66)	(3.44)	(2.59)	(8.37)
	endotherms										
0.7081	Two mostly	140.30	143.10	144.13	146.24 ¹	73.31		185.61	195.18	201.16	82.24
	separated	(0.16)	(0.01)	(0.10)	(0.29)	(3.39)		(3.68)	(1.01)	(0.86)	(2.35)
	endotherms										
0.8011	Two mostly	139.96	143.10	144.01	146.01 ¹	43.49		205.98	209.68	213.40	139.68
	separated	(0.11)	(0.01)	(0.08)	(0.06)	(1.59)		(5.52)	(3.50)	(2.00)	(13.71)
	endotherms										
0.9040	Two	139.50	142.64	143.54	145.09	15.60	205.24	211.94	213.44	215.20	189.91
	separated	(0.51)	(0.02)	(0.04)	(0.22)	(1.84)	(0.62)	(0.66)	(0.28)	(0.30)	(3.21)
	endotherms										
0.9505	Two	139.87	142.94	143.79	144.95	5.92	208.12	213.76	214.88	216.88	207.97
	separated	(0.58)	(0.59)	(0.17)	(0.17)	(0.47)	(0.90)	(0.22)	(0.18)	(0.16)	(3.18)
	endotherms										
0.9704	Two	140.53	142.18	143.54	144.64	2.75	207.68	213.31	214.52	216.40	212.75
	separated	(0.16)	(0.09)	(0.14)	(0.12)	(0.42)	(0.57)	(0.13)	(0.11)	(0.20)	(0.46)
	endotherms										
0.9812	One						206.54	212.85	214.40	216.36	210.51
	endotherm						(1.09)	(0.40)	(0.21)	(0.19)	(8.24)
0.9845	One						209.43	214.15	214.95	216.99	214.89
	endotherm						(1.24)	(0.14)	(0.15)	(0.26)	(5.31)
0.9911	One						208.24	213.77	214.67	216.46	217.24
	endotherm						(0.48)	(0.11)	(0.02)	(0.24)	(2.21)
0.9952	One						210.61	214.36	215.16	216.95	223.91
	endotherm						(0.57)	(0.28)	(0.13)	(0.27)	(5.34)
1.000	One						213.29	215.22	215.49	217.33	222.87
	endotherm						(0.54)	(0.02)	(0.07)	(0.30)	(6.78)

1. Estimated offset temperature as the endotherm never returns to the baseline. The mid-point between endotherms is used as an approximation of the baseline offset temperature of the low-temperature endotherm when the endotherms increasingly overlap. This separation also provides the calculation of the enthalpy of both the low- and high-temperature endotherms

						Conc.			
Solid					Conc.	of			
phase	Liquid	Solid	Liquid	Solid	of SA	4HBA	X(SA)	A(4HBA)	X(solvent)
						mg	mmol	mmol	
	w%	w%	mol%	mol%	mg	4HBA/	SA/	4HBA/	
	4HBA in	4HBA in	4HBA in	4HBA in	SA/g	g	(mol	(mol	mol solvent/
	SA	SA	SA	SA	solvent	solvent	total)	total)	(mol total)
SA	0.000%	0.000%	0.000%	0.000%	92.27	0.00	26.6910	0.0000	0.9733
α	0.392%	0.012%	0.392%	0.012%	86.15	0.34	24.9620	0.0982	0.9749
α	1.611%	0.017%	1.611%	0.017%	102.09	1.67	29.4337	0.4820	0.9701
α	3.953%	0.038%	3.953%	0.038%	93.36	3.84	26.9689	1.1098	0.9719
α	8.605%	0.046%	8.605%	0.046%	107.19	10.09	30.7852	2.8984	0.9663
α	6.778%	0.071%	6.778%	0.071%	110.52	8.04	31.7294	2.3070	0.9660
α	16.426%	0.100%	16.426%	0.100%	105.34	20.70	30.1776	5.9311	0.9639
α	26.630%	0.159%	26.630%	0.159%	115.86	42.05	32.8906	11.9376	0.9552
α	26.459%	0.166%	26.459%	0.166%	117.28	42.20	33.2788	11.9735	0.9547
α	28.293%	0.171%	28.293%	0.171%	99.80	39.38	28.4835	11.2384	0.9603
α	20.458%	0.193%	20.458%	0.193%	112.91	29.04	32.1998	8.2815	0.9595
α+β	34.387%	0.555%	34.387%	0.555%	128.29	67.24	36.0356	18.8857	0.9451
α+β	34.019%	20.038%	34.019%	20.038%	126.10	65.02	35.4643	18.2852	0.9463
α + β	34.182%	22.717%	34.182%	22.717%	129.35	67.18	36.3226	18.8634	0.9448
α+β	34.504%	56.387%	34.504%	56.387%	127.89	67.38	35.9255	18.9263	0.9451
α + β	34.466%	76.699%	34.466%	76.699%	119.30	62.74	33.6356	17.6898	0.9487
α + β	34.517%	99.336%	34.517%	99.336%	126.07	66.45	35.4418	18.6818	0.9459
β	40.829%	99.648%	40.829%	99.648%	86.09	59.41	24.5267	16.9239	0.9585
β	43.870%	99.725%	43.870%	99.725%	88.94	69.52	25.2458	19.7314	0.9550
β	49.685%	99.790%	49.685%	99.790%	58.55	57.81	16.8194	16.6085	0.9666
β	77.932%	99.938%	77.932%	99.938%	14.20	50.16	4.1421	14.6272	0.9812
β	93.321%	99.964%	93.321%	99.964%	3.34	46.63	0.9772	13.6545	0.9854
4HBA Anhyd									
rate	100.00%	100.00%	100.00%	100.00%	0.00	44.97	0.0000	13.1890	0.9868

Table 2. Solid-Liquid Equilibria for SA-4HBA Anhydrate in ACN at 20°C

Figure 1. XRPD of SA-4HBA (Anhydrate) of (select) solid phase samples from SLE study in ACN

Solid phase	Liquid	Solid	Liquid	Solid	Conc. of SA	Conc. of 4HBA	X(SA)	A(4HBA)	X(solvent)
	w%	w%	mol%	mol%	mg	mg	mmol	mmol	mol solvent/
	4HBA	4HBA in	4HBA in	4HBA in	SA/g	4HBA	SA/	4HBA /	(mol total)
	in SA	SA	SA	SA	solvent	/g	(mol	(mol	(
						solvent	total)	total)	
SA	0.00%	0.00%	0.00%	0.00%	22.91	0.00	3.6098	0.0000	0.9964
α	11.88%	0.047%	11.88%	0.047%	24.15	3.26	3.8022	0.5126	0.9957
α	16.19%	0.051%	16.19%	0.051%	24.44	4.72	3.8463	0.7430	0.9954
α	19.99%	0.057%	19.99%	0.057%	23.70	5.92	3.7302	0.9318	0.9953
α	28.15%	0.085%	28.15%	0.085%	24.48	9.59	3.8507	1.5087	0.9946
α	28.47%	0.086%	28.47%	0.086%	25.75	10.25	4.0485	1.6117	0.9943
α	36.65%	0.103%	36.65%	0.103%	26.25	15.18	4.1229	2.3853	0.9935
α	35.15%	0.104%	35.15%	0.104%	25.21	13.67	3.9618	2.1476	0.9939
α	51.40%	0.130%	51.40%	0.130%	28.31	29.95	4.4360	4.6922	0.9909
α	54.16%	0.143%	54.16%	0.143%	30.29	35.79	4.7397	5.5998	0.9897
α	58.55%	0.182%	58.55%	0.182%	34.83	49.19	5.4351	7.6759	0.9869
α + βΗ	71.19%	30.28%	71.19%	30.28%	37.23	92.02	5.7693	14.2585	0.9800
α + βΗ	70.74%	41.43%	70.74%	41.43%	39.91	96.47	6.1766	14.9312	0.9789
α + βΗ	70.48%	42.29%	70.48%	42.29%	35.64	85.09	5.5304	13.2022	0.9813
α + βΗ	70.18%	44.85%	70.18%	44.85%	38.68	91.03	5.9934	14.1046	0.9799
α + βΗ	70.06%	51.80%	70.06%	51.80%	41.42	96.95	6.4095	15.0010	0.9786
α + βΗ	70.65%	67.59%	70.65%	67.59%	42.01	101.09	6.4949	15.6309	0.9779
α + βΗ	71.19%	92.60%	71.19%	92.60%	34.42	85.06	5.3419	13.1996	0.9815
α + βΗ	71.39%	99.75%	71.39%	99.75%	35.42	88.39	5.4927	13.7077	0.9808
βН	74.80%	99.81%	74.80%	99.81%	30.19	89.63	4.6850	13.9081	0.9814
βН	80.61%	99.90%	80.61%	99.90%	18.66	77.56	2.9064	12.0794	0.9850
βН	89.24%	99.94%	89.24%	99.94%	8.74	72.43	1.3640	11.3075	0.9873
βН	88.63%	99.94%	88.63%	99.94%	10.40	81.12	1.6217	12.6440	0.9857
4HBA-	100.00	100.00%	100.00%	100.00%	0.00	69.740	0.0000	10.9070	0.9891
Hydrate	%								

Table 3. Solid-Liquid Equilibria for SA-4HBA Hydrate in 40 w% MeOH in H2O at 20°C

Figure 2. XRPD of SA-4HBA (monohydrate) of (select) solid phase samples from SLE study in 40 w% MeOH in H2O

Fitting the Liquid BIPs ${}^{\Delta g}{}^{L}_{12}$ and ${}^{\Delta g}{}^{L}_{21}$

For the liquid-state NRTL BIPs of 4-hydroxybenzoic acid (1) and salicylic acid (2), Δg_{12}^{L} and Δg_{21}^{L} were not expressed as functions of temperature due to the sparsity of solid-liquid equilibrium melt data (i.e., the SSLE data at the eutectic temperature).

During the regression of these parameters it was noted that a wide range of parameter values for Δg_{12}^L and Δg_{21}^L would give decent predictions of the SSLE data. As a result, a more in-depth study was performed to assess the degeneracy of the liquid parameters with respect to the SSLE criteria which must be satisfied simultaneously:

$$\{\gamma_{i}^{\alpha}x_{i}^{\alpha}f_{i}^{S}/f_{i}^{L} = \gamma_{i}^{\beta}x_{i}^{\beta}f_{i}^{S}/f_{i}^{L}\}_{i=1,2}$$
(S1)

Numerically, the regression procedure requires determination of the parameters Δg_{12}^{L} and Δg_{21}^{L} to calculate γ_{i}^{L} (provided known values of Δg_{12}^{S} and Δg_{21}^{S} , which we obtained from regressing the solvus data to the T-dependent expressions described in the text, and hence known values of γ_{i}^{S}). This was done by driving the objective function shown below to zero:

$$OF = \sum_{i=1}^{2} \left(\gamma_{i}^{\alpha} x_{i}^{\alpha} f_{i}^{S} / f_{i}^{L} - \gamma_{i}^{L} x_{i}^{L} \right)^{2} + \left(\gamma_{i}^{\beta} x_{i}^{\beta} f_{i}^{S} / f_{i}^{L} - \gamma_{i}^{L} x_{i}^{L} \right)^{2}$$
(S2)

Because there are only two regression parameters in the above equation $({}^{\Delta g}{}^{L}_{12}$ and ${}^{\Delta g}{}^{L}_{21})$, one can easily visualize how the OF varies with the parameter values. A contour plot showing this functional dependency is illustrated below:

Figure 3: Objective function at SSLE, with varying values of Δg_{12}^L and Δg_{21}^L .

Clearly, there is a wide range of parameter space over which the objective function is quite close to zero (e.g., $< e^{-4} = 0.0183$). Such degeneracy or relative "flatness" in the parameter space can make it difficult to converge at a single parameter set when different initial guesses are employed. Therefore, we focused-in on the lowest OF region, as shown below, and restricted our initial guesses for the parameters to be sufficiently close to the absolute minimum, thereby allowing the regression algorithm to more-easily converge to the global-minimum. Alternatively, the minimum value can be approximately read off the graph.

Figure 4: Zoomed-view of Figure 3.