Supplementary Material for

g-ZnO/Si₉C₁₅: A S-scheme Heterojunction with High Carrier Mobility for Photo-electro Catalysis Water Splitting

Yang Shen ^{1,*}, Zhihao Yuan ¹, Zhen Cui ^{2,*}, Deming Ma ¹, Pei Yuan ¹, Fengjiao Cheng ³, Kunqi

Yang ¹, Yanbo Dong ¹ and Enling Li ^{1,*}

¹ School of Science, Xi'an University of Technology, Xi'an 710054, China;

² School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048,

China

³ School of Electrical Engineering, Xi'an University of Technology, Xi'an 710054, China

* Correspondence: shenyang@xaut.edu.cn; zcui@xaut.edu.cn; lienling@xaut.edu.cn

Part A: The calculation mothed of carrier mobility

The carrier mobility is calculated as follows:

$$\mu = \frac{eh^{3}C_{2D}}{k_{\rm B}Tm_{\rm e}^{*}m_{\rm d}(E_{\rm 1}^{\rm i})^{2}}$$
(1)

where $e, \hbar, k_{\rm B}, T, m_{\rm e}^*$, and $m_{\rm d}$ are electron charge, simplify Planck constant, Boltzmann constant, temperature, the direction of Zigzag and Armchair orientation effective quality, and average effective quality. Further, $m_{\rm d}$ is determined by the following formula: $m_{\rm d} = \sqrt{m_{\rm x}^* m_{\rm y}^*}$. The $E_1^{\rm i}$ is the potential deformation constant of electrons and holes in the direction of transmission in the CBM or VBM, the calculation formula is: $E_1^{\rm i} = \Delta E_i / (\Delta l / l_0)$, where ΔE_i (i for CBM or VBM) is the energy change of CBM or VBM under external strain, and Δl is the deformation of l_0 with strain. The calculation equation for the elastic modulus ($C_{\rm 2D}$) of the two-dimensional material is as follows: $C_{2D} = \left[\frac{\partial^2 E}{\partial l^2} \right]$, where *E*, *l*, and *S*₀ are the total strain energy, applied strain, and Lattice area of the two-dimensional system at equilibrium, respectively.

Part B: The calculation method of the Solar to hydrogen (STH) efficiency and corrected STH efficiency

The STH efficiency is:

$$\eta_{\rm STH} = \eta_{\rm abs} \times \eta_{\rm cu} \tag{2}$$

where η_{abs} and η_{cu} are the efficiency of light absorption and carrier utilization, respectively.

The η_{abs} is calculated by:

$$\eta_{\rm abs} = \frac{\int_{E_{\rm g}}^{\infty} P(h\omega) \,\mathrm{d}(h\omega)}{\int_{0}^{\infty} P(h\omega) \,\mathrm{d}(h\omega)}$$
(3)

where $P(\hbar\omega)$ is the AM 1.5G standard solar spectrum at the photon energy $\hbar\omega$, and E_g represents the bandgap of the g-ZnO/Si₉C₁₅ heterojunction.

The η_{cu} is determined as:

$$\eta_{cu} = \frac{\Delta G \int_{E_{min}}^{\infty} \frac{P(h\omega)}{h\omega} d(h\omega)}{\int_{E_{g}}^{\infty} P(h\omega) d(h\omega)}$$
(4)

where ΔG equals to 1.23 eV for water splitting. The E_{\min} is the energy of photons, which can be determined by:

$$E_{\min} = \begin{cases} E_{g}, , , & (\chi (H_{2}) \ge 0.2 \ \chi (O_{2}) \ge 0.6) \\ E_{g} + 0.2 - \chi (H_{2}), , , & (\chi (H_{2}) < 0.2 \ \chi (O_{2}) \ge 0.6) \\ E_{g} + 0.6 - \chi (O_{2}), , , & (\chi (H_{2}) \ge 0.2 \ \chi (O_{2}) < 0.6) \\ E_{g} + 0.8 - \chi (H_{2}) - \chi (O_{2}), & (\chi (H_{2}) < 0.2 \ \chi (O_{2}) < 0.6). \end{cases}$$
(5)

where the $\chi(H_2)$ and $\chi(O_2)$ are the potential provided (shown in Fig. 4 (b)) by photogenerated carriers that can drive the hydrogen evolution reduction (HER, vs. NHE) and oxygen evolution reactions (OER, vs. NHE), respectively. Considering the effect of polarity of the g-ZnO/Si₉C₁₅ heterojunction on the electron-hole separation, the corrected STH efficiency is:

$$\eta'_{\rm STH} = \eta_{\rm STH} \times \frac{\int_0^\infty P(h\omega) d(h\omega)}{\int_0^\infty P(h\omega) d(h\omega) + \Delta \Phi \int_{E_{\rm min}}^\infty \frac{P(h\omega)}{h\omega} d(h\omega)}$$
(6)

where $\Delta \Phi$ the difference of vacuum level between such surfaces of the g-ZnO/Si₉C₁₅ heterojunction.

Part C: The calculation method of the power conversion efficiency (PCE)

The PCE (η_{PCE}) of the g-ZnO/Si₉C₁₅ heterojunction is calculated as follws:

$$\eta_{\text{PCE}} = \frac{\beta_{\text{FF}} J_{\text{SC}} V_{\text{OC}}}{P_{\text{Solar}}} = \frac{0.65 \left(E_{\text{g}} - E_{\text{CBO}} - 0.3 \right) \int_{E_{\text{g}}}^{\infty} \frac{P(h\omega)}{h\omega} d(h\omega)}{\int_{0}^{\infty} P(h\omega) d(h\omega)}$$
(7)

where the $\beta_{\rm FF}$ is the fill factor (0.65). The $J_{\rm SC}$ is short circuit current: $E_{\rm g} - E_{\rm CBO} - 0.3$, where $E_{\rm g}$ and $E_{\rm CBO}$ is donor bandgap and CB offset, respectively. The $V_{\rm OC}$ is the open circuit voltage: $\int_{E_{\rm g}}^{\infty} \frac{P(h\omega)}{h\omega} d(h\omega)$, where $P(\hbar\omega)$ is the AM 1.5G solar flux at the photon energy $\hbar\omega$. The $P_{\rm solar}$ is the total incident solar power per unit area: $\int_{0}^{\infty} P(h\omega) d(h\omega)$. **Part D: The Hydrogen evolution reaction (HER) process and the calculation method**

of reaction Gibbs free energy

The HER process consists of the following steps:

$$(\mathrm{H}^+ + \mathrm{e}^-) + * \rightarrow *\mathrm{H}$$

$$^{*}\mathrm{H} + (\mathrm{H}^{+} + \mathrm{e}^{-}) \rightarrow \mathrm{H}_{2} + ^{*}$$

where * indicates free site of absorbability on heterojunction surface. *H represents H atom absorbed on the surfaces the g-ZnO/Si₉C₁₅ heterojunction. Under standard conditions (pH= 0, P= 1 bar, T= 298.15 K), the Gibbs free energy of H⁺ + e⁻ corresponds to that of a half of H₂ molecule at NHE. Reaction Gibbs free energy (*G*) is calculated as follows:

$$G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_{\rm U} \tag{8}$$

where ΔE , ΔZPE , and *TS* represent adsorption energy, difference of zero-point energy, and difference of entropy (under the T = 298.15 K), respectively. The $\Delta G_U = -eU$ is the influence of voltage on energy, where *e* is the elementary charge, and *U* is the potential measured against the NHE. The repair of entropy and zero-point energy is obtained by vibration frequency calculation. The zero-point energy can be determined by the sum of all vibration modes and calculated as follows:

$$ZPE=1/2\sum_{i}^{k}hv_{i}$$
(9)

where h and v_i represent the Planck constant and the frequency corresponding to the *i*-th vibration mode, and k is the number of vibration modes. The *TS* values is calculated as follow:

$$TS = k_{\rm B}T \left[\sum_{i}^{k} \ln\left(\frac{1}{1 - e^{-hv_i/k_BT}}\right) + \sum_{i}^{k} \frac{hv_i}{k_BT} \left(\frac{1}{e^{hv_i/k_BT} - 1}\right) + 1 \right]$$
(10)

where $k_{\rm B}$ represents the Boltzmann constant. Ideally, when the theoretically applied voltage U = 0 V, the HER can be spontaneously driven without additional power. The $\eta^{\rm HER}$ depends on the increment ($\Delta G_{*\rm H}$) of the Gibbs free energy in the reaction, and the η^{HER} is calculated as follows:

$$G^{\text{HER}} = \left\{ \Delta G_{*\text{H}} \right\}$$
$$\eta^{\text{HER}} = G^{\text{HER}} / e \tag{11}$$

Part E: The adsorption sites of H atom adsorbed on the Si9C15 interface and the g-

ZnO interface

Fig. S. 1 The crystal structure and adsorption site of H atom adsorbed on (a) Si_9C_{15} interface and (b) g-ZnO interface of the g-ZnO/ Si_9C_{15} heterojunction, respectively. The orange, gray, blue, brown, peach balls represent Zn, O, Si, C, H atoms, respectively. The purple sphere represents the adsorption site.