Supporting Information

Structures of Multinuclear U(VI) Species on Hydroxylated α-SiO₂

(001) Surface: Insights from DFT Calculations

Pengyuan Gao ^{a,b,d}, Qiang Jin ^{a,b}, Zongyuan Chen ^{a,b}, Dongqi Wang ^c, Christophe

Tournassat ^{d,e}, Zhijun Guo ^{a,b*}

^a Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
^b Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China
^c State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
^d Institut des Sciences de la Terre d'Orléans, Université d'Orléans-CNRS-BRGM, Orléans 45071, France
^e Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

*Corresponding author:

Tel.: +86 931 8913278;

Fax: +86 931 8913551

E-mail address: guozhj@lzu.edu.cn (Z.J. Guo)

Bind mode	Adsorbate	Surface site	U-O _s	U-U	U-Si	H_w - O_s	$H_s\text{-}O_{yl}$	H_b-O_s	∠U0(0)U ^a	ΔE_{bind}
End-on	(UO ₂) ₂ (OH) ³⁺	≡SiOHO	2.20, 2.84	4.69	3.22	2.07, 2.22	-	-	165.57 (158.20)	-3.61
	$(UO_2)_2(OH)_2^{2+}$	≡SiOHO	2.22, 2.63	3.68	3.10	-	-	-	15425 (164.46)	-2.75
	(UO ₂) ₂ (OH) ³⁺	≡SiOHOH	2.60, 2.69	4.61	3.42	1.65	-	-	153.66 (158.20)	-1.50
	$(UO_2)_2(OH)_2^{2+}$	≡SiOHOH	2.56, 2.70	3.70	3.38	-	-	-	155.02 (164.46)	-1.26
	(UO ₂) ₂ (OH) ³⁺	≡SiOHSiO	2.16, 2.58	4.67	3.58, 4.00	2.05	-	-	166.35 (158.20)	-4.21
	$(UO_2)_2(OH)_2^{2+}$	≡SiOHSiO	2.11, 2.49	3.76	3.60, 3.93	1.82	-	-	158.78 (164.46)	-3.48
	(UO ₂) ₂ (OH) ³⁺	≡SiOHSiOH	2.51, 2.69	4.74	3.94, 4.02	1.88, 2.26	-	-	166.31 (158.20)	-1.56
	$(UO_2)_2(OH)_2^{2+}$	≡SiOHSiOH	2.52, 2.54	3.71	3.91, 4.08	1.65	-		158.41 (164.46)	-1.50
	(UO ₂) ₂ (OH) ³⁺	≡SiOHO-SiOHO	2.43, 2.43, 2.53, 2.77	4.43	3.34, 3.22	1.97	-	-	142.28 (158.20)	-5.66
Side-on	$(UO_2)_2(OH)^{3+}$	≡SiOHOH-SiOHOH	2.54, 2.60, 2.75, 2.79	4.58	3.45, 3.46	2.01	-	-	154.21 (158.20)	-2.73
	(UO ₂) ₂ (OH) ₂ ²⁺	≡SiOHvSiO	2.22, 3.05	3.92	3.83, 4.48	1.70	1.63	2.01	164.10 (164.46)	-2.62
	$(UO_2)_2(OH)_2^{2+}$	≡SiOHvSiOH	2.59, 3.10	3.85	4.17, 4.53	1.80, 1.94	1.68	1.75	157.91 (164.46)	-1.33
The	values	in brackets	are	the	angle	es of	th	ne	corresponding	mo

Table S1. Structural parameters (in Å), binging energies (in eV), and bond/dihedral angles of surface complexes of $(UO_2)_2(OH)^{3+}$ and $(UO_2)_2(OH)_2^{2+}$ at =SiOHO(H)-SiOHO(H), =SiOHO(H) and =SiOHSiO(H) sites.

а

System	U(VI) initial concentration (μM)	рН	U-U distance(Å)
U(VI)-Silica	41.5	6.46	3.97
U(VI)-Alumina	41.8/1000	6.50/9.00	4.01/3.91
U(VI)-Gibbsite	10	5.60/9.70	4.30/3.92
U(VI)- Hematite	12-133	6.39-8.49	3.85-3.92
U(VI)-Al hydroxide	1.26-960	3.00-6.90	3.91-3.93

Table S2. U-U distances measured by EXAFS for different U(VI) adsorption systems¹⁻⁵

Fig. S1. U(VI) speciation at concentrations of 10⁻⁶-10⁻³ M in 0.1mol/L NaCl solution at 25°C. The PHREEQC code with THERMOCHIMIE v.11a thermodynamic database was used in speciation calculations.⁶

Fig. S2. Configurations of the end-on surface complexes of $(UO_2)_2(\mu$ -OH)(H₂O)₈³⁺ and $(UO_2)_2(\mu$ -OH)₂(H₂O)₆²⁺ at (a)-(d) =SiOHO(H) and (e)-(h) =SiOHSiO(H).

Fig. S3. Configurations of the side-on surface complexes of (a)-(b) $(UO_2)_2(\mu$ -OH)(H₂O)₈³⁺ at =SiOHO(H)-SiOHO(H) and those of (c)-(d) $(UO_2)_2(\mu$ -OH)₂(H₂O)₆²⁺ at =SiOHvSiO(H).

References

1. E. R. Sylwester, E. A. Hudson, and P. G. Allen, *Geochim. Cosmochim. Acta*, 2000, **64**, 2431–2438.

2. Y. Tang, and R. J. Reeder, Geochim. Cosmochim. Acta, 2009, 73, 2727–2743.

3. T. Hattori, T. Saito, K. Ishida, A. C. Scheinost, T. Tsuneda, S. Nagasaki, and S. Tanaka, *Geochim. Cosmochim. Acta*, 2009, **73**, 5975–5988.

4. J. R. Bargar, R. Reitmeyer, J. J. Lenhart and J. A. Davis, *Geochim. Cosmochim. Acta*, 2000, **64**, 2737–2749.

5. A. Froideval, M. Del Nero, C. Gaillard, R. Barillon, I. Rossini and J. L. Hazemann, *Geochim. Cosmochim. Acta*, 2006, **70**, 5270–5284.

6. E. Giffaut, M. Grivé, P. Blanc, P. Vieillard, E. Colàs, H. Gailhanou, S. Gaboreau, N. Marty, B. Madé and L. Duro, *Appl. Geochem.*, 2014, **49**, 225-236.