Supplementary Information

Electronic excited states of monobromosilylene molecules including the spin-orbit-coupling

Lili Bian^a, Shimin Shan^b, Yi Lian^a, Lidan Xiao^a, Di Liu^a, Hang Lv^{*a}, Haifeng Xu^{*a}, Bing Yan^{*a}

^a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China

^b School of Semiconductors and Physics, North University of China, Taiyuan, 030051, China

	CC-PVTZ-f12	CC-PVQZ-f12	CBS(3, 4)		
	Ground state(X ¹ A')				
R _{si-H} (Å)	1.517	1.517	1.517		
R _{si-Br} (Å)	2.243	2.244	2.244		
∠H-Si-Br (deg)	94.5	94.5	94.5		
First excited state(A ¹ A'')					
R _{si-H} (Å)	1.508	1.508	1.509		
R _{si-Br} (Å)	2.213	2.214	2.215		
∠H-Si-Br (deg)	117.9	117.8	117.8		
Lowest triplet state(a ³ A'')					
R _{si-H} (Å)	1.485	1.485	1.484		
R _{si-Br} (Å)	2.209	2.210	2.210		
∠H-Si-Br (deg)	115.9	115.9	115.9		

Table S1. Equilibrium geometries of HSiBr as a funct	tion of different basis set
--	-----------------------------

	CC-PVTZ-f12	CC-PVQZ-f12	CBS(3, 4)		
	#1				
R _{si-H} (Å)	1.516	1.516	1.516		
R _{si-Br} (Å)	2.244	2.245	2.245		
∠H-Si-Br (deg)	94.5	94.5	94.5		
		#2			
R _{si-H} (Å)	1.486	1.485	1.485		
R _{si-Br} (Å)	2.210	2.210	2.211		
∠H-Si-Br (deg)	116.2	116.0	115.9		
	#3				
R _{si-H} (Å)	1.486	1.485	1.485		
R _{si-Br} (Å)	2.210	2.210	2.211		
∠H-Si-Br (deg)	116.2	116.0	115.9		
#4					
R _{si-H} (Å)	1.485	1.485	1.485		
R _{si-Br} (Å)	2.210	2.210	2.210		
∠H-Si-Br (deg)	116.1	116.1	116.0		
#5					
R _{si-H} (Å)	1.509	1.509	1.509		
R _{si-Br} (Å)	2.215	2.215	2.215		
∠H-Si-Br (deg)	117.6	117.6	117.6		

Table S2. Equilibrium geometries of spin-coupled states as a function of different basis set

	VTE ^a (eV)		oscillator strength		
state	CC-PVTZ-f12	CC-PVQZ-f12	CBS	CC-PVTZ-f12	CC-PVQZ-f12
X ¹ A'	0	0	0		
a³A''	1.498	1.503	1.507		
A ¹ A''	2.500	2.507	2.512	1.47×10 ⁻²	1.49×10 ⁻²
2 ³ A''	4.320	4.348	4.368		
1 ³ A'	4.346	4.353	4.358		
2 ³ A'	4.482	4.516	4.541		
21A''	4.616	4.643	4.663	9.17×10 ⁻³	9.21×10 ⁻³
2 ¹ A'	4.938	4.963	4.981	1.65×10 ⁻²	1.56×10 ⁻²
3 ¹ A'	5.282	5.285	5.287	8.67×10 ⁻²	8.82×10 ⁻²
3 ³ A''	5.370	5.39	5.405		
31A''	5.628	5.645	5.657	4.44×10 ⁻⁵	3.85×10 ⁻⁵
4 ¹ A'	5.640	5.648	5.654	6.21×10 ⁻²	6.41×10 ⁻²
3 ³ A'	6.625	6.651	6.670		
4 ³ A''	6.932	6.963	6.986		
5 ³ A''	6.978	6.997	7.011		
4 ³ A'	7.020	7.045	7.063		
4 ¹ A''	7.155	7.184	7.205	6.02×10 ⁻³	5.98×10 ⁻³
15A''	7.748	7.78	7.803		
15A'	7.975	8.01	8.036		
25A''	8.702	8.728	8.747		

 Table S3. Vertical transition energy and oscillator strength as a function of different basis set

State	VTE ^a (eV)	Oscillator strength	Compositions of states	
#1	0	0	99.91% 1 ¹ A', 0.02% 3 ³ A', 0.04% 1 ³ A'', 0.04% 2 ³ A'', 0.01% 4 ³ A''	
#2	1.500	8.76×10 ⁻⁸	99.88% 1 ³ A'', 0.04% 2 ³ A', 0.03% 2 ¹ A'', 0.01% 1 ³ A'	
#3	1.500	7.70×10 ⁻⁷	99. 90% 1 ³ A'', 0.04% 2 ³ A', 0.03% 2 ³ A''	
#4	1.500	9.68×10 ⁻⁶	99.86% 1 ³ A'', 0.05% 2 ³ A'', 0.03% 1 ¹ A', 0.03% 2 ¹ A'	
#5	2.494	1.48×10 ⁻²	99.69% 1 ¹ A'', 0.16% 2 ³ A', 0.12% 2 ³ A'', 0.03% 1 ³ A', 0.01% 4 ³ A'	
#6	4.266	3.50×10 ⁻⁷	76.05% 2 ³ A'', 2.50% 1 ³ A', 21.30% 2 ³ A', 0.12% 3 ³ A'', 0.01% 1 ³ A''	
#7	4.266	3.65×10⁻⁵	75.52% 2 ³ A",2.81% 1 ³ A', 21.56% 2 ³ A', 0.08% 3 ¹ A", 0.01% 2 ¹ A", 0.01% 1 ¹ A"	
#8	4.316	1.49×10 ⁻³	95.47% 2 ³ A'', 1.26% 1 ³ A',0.68% 3 ³ A'', 0.04% 2 ³ A', 0.03% 1 ³ A'', 2.36% 2 ¹ A', 0.07% 3 ¹ A', 0.06% 4 ¹ A', 0.02% 1 ¹ A'	
#9	4.352	1.10×10 ⁻⁴	96.68% 1 ³ A', 0.26% 2 ³ A'',1.50% 2 ³ A', 0.07% 3 ³ A', 0.06% 4 ³ A'', 0.04% 3 ³ A'', 0.03% 1 ⁵ A'', 1.34% 2 ¹ A'', 0.03% 2 ⁵ A''	
#10	4.357	2.04×10 ⁻⁹	97.07% 1 ³ A', 1.36% 2 ³ A'', 1.24% 2 ³ A',0.07% 3 ³ A', 0.02% 2 ⁵ A'', 0.05% 4 ¹ A'', 0.15% 2 ¹ A'', 0.02% 1 ¹ A'', 0.02% 1 ⁵ A'', 0.01% 3 ¹ A''	
#11	4.358	1.22×10 ⁻⁵	95.92% 1 ³ A', 0.90% 2 ³ A', 2.90% 2 ³ A'', 0.07% 4 ³ A'', 0.08% 3 ³ A'',0.01% 1 ¹ A', 0.02% 2 ¹ A', 0.05% 3 ¹ A', 0.02% 1 ⁵ A'', 0.01% 4 ¹ A'	
#12	4.427	2.57×10 ⁻³	71.54% 2 ³ A',25.61% 2 ¹ A'', 2.65% 1 ³ A', 0.03% 1 ¹ A'', 0.14% 3 ³ A'', 0.01% 3 ³ A', 0.02% 4 ³ A''	
#13	4.559	2.35×10 ⁻⁶	75.86% 2 ³ A', 10.98% 2 ³ A'',3.02% 3 ³ A'', 0.08% 1 ³ A'', 0.04% 1 ³ A', 0.01% 3 ¹ A'	
#14	4.567	2.54×10 ⁻⁵	75.94% 2 ³ A', 21.82% 2 ³ A'', 0.19% 1 ³ A', 0.22% 1 ¹ A'', 0.05% 2 ¹ A'',1.78% 3 ¹ A''	
#15	4.688	6.38×10 ⁻³	70. 40% 2 ¹ A'', 24.99% 2 ³ A', 0.15% 1 ³ A', 0.01% 4 ³ A', 4.24% 3 ³ A'', 0.14% 2 ³ A'',0.06% 1 ³ A''	
#16	4.991	1.68×10 ⁻²	91.77% 2 ¹ A', 0.04% 3 ³ A', 0.02% 4 ³ A', 0.03% 1 ³ A'', 1. 60% 2 ³ A'', 7.50% 3 ³ A'', 0.05% 4 ³ A''	
#17	5.290	7.04×10 ⁻²	97.47% 3 ¹ A', 0.04% 1 ³ A', 0.04% 2 ³ A', 0.04% 4 ³ A',0.1% 3 ³ A',0.01% 5 ³ A',1.92% 3 ³ A'', 0.02% 2 ³ A'', 0.25% 4 ³ A'', 0.01% 5 ³ A'', , 0.01% 1 ³ A'', 0.1% 2 ¹ A'	
#18	5.416	2.78×10 ⁻⁴	96.39% 3 ³ A'', 0.35% 3 ¹ A',0.07% 2 ¹ A', 1.30% 2 ³ A'', 1. 80% 2 ³ A',0.06% 1 ³ A'	
#19	5.420	1.97×10 ⁻⁴	95.32% 3 ³ A'', 1.95% 2 ³ A', 0.24% 3 ¹ A'',2.39% 2 ¹ A'',0.06% 1 ³ A',0.01% 3 ¹ A', 0. 01% 1 ¹ A''	
#20	5.426	1.01×10 ⁻³	88.46% 3 ³ A'', 0.02% 2 ³ A', 1.39% 2 ³ A'', 0.02% 3 ³ A', 6.47% 2 ¹ A',1.94% 4 ¹ A', 1.65% 3 ¹ A'	
#21	5.657	2.74×10 ⁻⁵	97.84% 3 ¹ A'', 1.09% 2 ³ A', 0.22% 3 ³ A'', 0.03% 4 ³ A', 0.01%	

Table S4. Vertical transition energy, oscillator strength, and composition of spin-orbit coupled states of HSiBr at the MRCI-F12/cc-pVQZ-F12 level

			3 ³ A',0.78% 2 ³ A'', 0.01% 2 ¹ A''
#22			97.53% 4 ¹ A', 0.26% 4 ³ A', 0.03% 3 ³ A', 0.17% 2 ³ A'', 1.77%
	5.674	6.07×10 ⁻²	3 ³ A'', 0.02% 1 ³ A', 0.08% 4 ³ A'', 0.08% 5 ³ A'', 0.01% 3 ¹ A',
			0.07% 2 ¹ A'
#23	6.645	0.40-40-7	87.92% 3 ³ A', 0.03% 1 ³ A',11.62% 4 ³ A'', 0.38% 5 ³ A'',0.04%
	8.10×10 ⁻		1 ⁵ A''
#24	6.645	F 47 405	87.7% 3 ³ A',11.78% 4 ³ A'', 0.39% 5 ³ A'', 0.02% 2 ¹ A', 0.04%
	6.615	5.17×10°	3 ¹ A', 0.04% 1 ⁵ A'', 0.01% 4 ¹ A'
#25		0.07 10.1	94.28% 3 ³ A', 0.05% 1 ³ A', 4.57% 4 ¹ A'',0.06% 1 ⁵ A'', 0.01%
	6.632	3.35×10 ⁻	2 ¹ A'', 0.01% 3 ¹ A''
#26	c 074	5 61 404	99.01% 4 ³ A'', 0.19% 5 ³ A'', 0.38% 4 ³ A', 0.06% 1 ³ A', 0.05%
	6.974	5.61×10 ⁻⁴	1 ⁵ A', 0.18% 3 ¹ A', 0.10% 4 ¹ A'
#27			80.24% 4 ³ A'', 5.58% 5 ³ A'', 4.27% 4 ³ A', 9.55% 3 ³ A', 0.10%
	7.013	1.89×10 ⁻⁰	1 ³ A', 0.01% 2 ³ A', 0.06% 1 ⁵ A'', 0.16% 1 ⁵ A', 0.02% 2 ⁵ A''
#28			81.94% 4 ³ A'', 6.65% 5 ³ A'', 1.12% 4 ³ A', 9.86% 3 ³ A', 0.02%
	7.015	3.47×10 ⁻⁵	1 ³ A', 0.02% 1 ⁵ A'', 0.18% 1 ⁵ A', 0.1% 3 ¹ A', 0.06% 2 ¹ A',
			0.01% 1 ¹ A', 0.01% 2 ⁵ A''
#29	7.047	6.22.40-5	74.82% 4 ³ A',19.60% 5 ³ A'', 4.08% 4 ³ A'', 0.07% 4 ¹ A'', 0.15%
	7.047	6.32×10°	1 ⁵ A'', 0.16% 1 ⁵ A', 0.04% 2 ⁵ A'', 1.05% 3 ³ A', 0.01% 1 ³ A'
#30			69.58% 4 ³ A', 10.87% 5 ³ A'', 1.99% 4 ³ A'', 1.12% 3 ³ A', 0.01%
	7.050	1.07×10 ⁻⁵	1 ¹ A', 0.02% 2 ¹ A',0.01% 3 ¹ A', 0.07% 4 ¹ A', 0.08% 1 ⁵ A'',
			0.24% 1 ⁵ A', 0. 04% 2 ⁵ A''
#31	7.050	1 7010-5	96.48% 4 ³ A', 2.48% 4 ³ A'', 0.41% 3 ³ A', 0.45% 4 ¹ A'', 0.04%
	7.056	1.79×10 ⁻⁵	3 ¹ A'', 0.09% 1 ⁵ A'', 0.01% 1 ³ A', 0.01% 1 ¹ A''
#32	7.000	0.4010-6	97.86% 5 ³ A'', 0.23% 4 ³ A'', 0.08% 4 ³ A', 0.1% 3 ³ A', 0.01%
	7.069	9.49×10 *	3 ¹ A', 0.01% 4 ¹ A', 1.27% 1 ⁵ A', 0.44% 1 ⁵ A'',0.12% 2 ⁵ A''
#33	7 092	2 08×10-6	72.72% 5 ³ A'', 1.46% 4 ³ A'', 23.48% 4 ³ A', 0.99% 3 ³ A', 0.06%
	7.082	5.06×10 *	4 ¹ A'', 0.68% 1 ⁵ A', 0.51% 1 ⁵ A'',0.1% 2 ⁵ A''
#34	7 099	2 97, 10-5	66.82% 5 ³ A'', 2.17% 4 ³ A'', 28.42% 4 ³ A', 1.08% 3 ³ A', 0.26%
	7.088	2.87×10 -	4 ¹ A', 0.05% 3 ¹ A', 0.7% 1 ⁵ A', 0. 4% 1 ⁵ A'',0.06% 2 ⁵ A''
#35	7.205	5.61×10 ⁻³	93.78% 4 ¹ A'', 5.49% 3 ³ A', 0.63% 4 ³ A', 0.07% 1 ³ A'
#36	7 705	E 60×10-11	81.88% 1 ⁵ A'', 17.84% 1 ⁵ A', 0.11% 2 ⁵ A'', 0.05% 4 ³ A', 0.12%
	7.705	5.00×10	5 ³ A''
#37	7 705	1 (2).10-8	81.66% 1 ⁵ A", 18.06% 1 ⁵ A', 0.14% 2 ⁵ A", 0.06% 4 ³ A', 0.14%
	7.705	1.63×10°	5 ³ A''
#38	7 7 4 2	1. (11.0-8	93.1% 1 ⁵ A", 5.6% 1 ⁵ A', 1.07% 2 ⁵ A", 0.02% 4 ³ A", 0.09%
	7.742	1.61×10°	4 ³ A', 0.18% 3 ³ A', 0.03% 1 ³ A',
#39	7 740	2 5 4 4 0 8	90.94% 1 ⁵ A'', 5.38% 1 ⁵ A', 0.6% 2 ⁵ A'', 0.29% 5 ³ A'', 0.04%
	7.748	2.54×10°	4 ³ A', 0.04% 3 ³ A', 0.02% 1 ³ A'
#40	7 764	4.02.40-7	98.15% 1 ⁵ A'', 0.42% 1 ⁵ A', 1.1% 2 ⁵ A'', 0.16% 5 ³ A'', 0.07%
	/./61	1.02×10-7	3 ³ A', 0.06% 4 ³ A', 0.02% 1 ³ A',
#41	7 000	7 07 40 11	95.93% 1 ⁵ A', 0. 7% 1 ⁵ A'', 2.66% 2 ⁵ A'', 0.04% 4 ³ A'', 0.67%
	/.988	/.9/×10 ⁻¹¹	5 ³ A''
#42	7.996	4.25×10 ⁻¹⁰	90.84% 1 ⁵ A', 5.36% 1 ⁵ A'', 3.32% 2 ⁵ A'', 0.02% 4 ³ A'', 0.42%

			5 ³ A''
#43	8 02E	1 14×10-8	90.2% 1 ⁵ A', 8.16% 1 ⁵ A'', 0.4% 2 ⁵ A'', 0.04% 4 ³ A'', 1.16%
	8.025	1.14×10°	5 ³ A'', 0.01% 1 ³ A'', 0.01% 3 ³ A''
#44	0.050	1 52.40-9	80.64% 1 ⁵ A', 17.42% 1 ⁵ A'', 1.19% 2 ⁵ A'', 0.03% 4 ³ A'', 0.7%
	8.059	1.53×10 ⁻⁵	5 ³ A'', 0.02% 1 ³ A''
#45	0.000	2 2110-8	81.83% 1 ⁵ A', 16.66% 1 ⁵ A'', 0.62% 2 ⁵ A'', 0.85% 5 ³ A'',
	8.062	3.31×10°	0.03% 1 ³ A''
#46	#46 8.727 4.29×10 ⁻⁹		99.04% 2 ⁵ A", 0.6% 1 ⁵ A", 0.2% 1 ⁵ A', 0.12% 5 ³ A", 0.02%
			1 ³ A'
#47	0 707	2.01.10-9	98.86% 2 ⁵ A", 0.6% 1 ⁵ A", 0.2% 1 ⁵ A', 0.12% 5 ³ A", 0.02%
	8.727	3.81×10 5	1 ³ A'
#48	0 707	1 47.40.9	97.58% 2 ⁵ A'', 1.53% 1 ⁵ A'', 0.86% 1 ⁵ A', 0.01% 3 ³ A', 0.01%
	8.737 1.47×10 ⁻³		1 ³ A'
#49	0 742	2 52-10-10	96.52% 2 ⁵ A'', 0.48% 1 ⁵ A'', 2.78% 1 ⁵ A', 0.19% 5 ³ A'', 0.01%
	8.743	3.53×10 ¹⁰	4 ³ A''
#50	8.745	8.77×10 ⁻¹¹	96.38% 2 ⁵ A'', 0.93% 1 ⁵ A'', 2.58% 1 ⁵ A', 0.12% 5 ³ A''
^a The zero-point energy of the ground state was considered in the values of VTE. The unit of VTE is eV			

State	TDM(a.u.)	State	TDM(a.u.)
#1		#26	0.056
#2	0.001	#27	0.003
#3	0.005	#28	0.014
#4	0.015	#29	0.006
#5	0.473	#30	0.008
#6	0.002	#31	0.010
#7	0.006	#32	0.007
#8	0.116	#33	0.004
#9	0.031	#34	0.013
#10	0.000	#35	0.176
#11	0.010	#36	<10-4
#12	0.151	#37	<10-3
#13	0.005	#38	<10-3
#14	0.015	#39	<10-3
#15	0.231	#40	<10 ⁻³
#16	0.363	#41	<10 ⁻⁴
#17	0.724	#42	<10 ⁻⁴
#18	0.045	#43	<10 ⁻³
#19	0.038	#44	<10 ⁻⁴
#20	0.085	#45	<10-3
#21	0.014	#46	<10-3
#22	0.649	#47	<10-3
#23	0.002	#48	<10-4
#24	0.006	#49	<10-4
#25	0.045	#50	<10-4

Table S5. Transition dipole moments (TDMs) corresponding to 50 states at the equilibrium geometries after considering soc effects

Dissociation channel	Energy of dissociation limit (eV)	Electronic states		
"H+ SiBr"				
Н (² S _g) + SiBr (Х ² П)	3.35	1 ¹ A',1 ¹ A'', 1 ³ A' , 1 ³ A''		
H ($^{2}S_{g}$) + SiBr ($a^{4}\Sigma^{-}$)	6.23	2³A'' , 1⁵A''		
H ($^{2}S_{g}$) + SiBr (B $^{2}\Sigma^{+}$)	6.32	2 ¹ A', 2 ³ A'		
H ($^{2}S_{g}$) + SiBr (A $^{2}\Delta$)	7.54	3 ³ A',3 ³ A'', 3 ¹ A' , 2 ¹ A'',		
Н (² S _g) + SiBr (b ⁴ П)	7.91	4 ³ A',4 ³ A'',1 ⁵ A',2 ⁵ A'',		
H (${}^{2}S_{g}$) + SiBr (C ${}^{2}\Sigma^{-}$)	8.05	31A'', 53A''		
Н (² S _g) + SiBr (D ² П)	8.21	4 ¹ A', 4 ¹ A''		
	"SiH + Br"			
HSi (Х ² П) + Br (² Р _u)	3.97	1 ¹ A', 1 ¹ A'', 2 ¹ A', 2 ¹ A'', 3 ¹ A', 3 ¹ A'', 1 ³ A',		
		1 ³ A'', 2 ³ A', 2 ³ A'', 3 ³ A' , 3 ³ A''		
HSi ($a^4\Sigma^-$) + Br (2P_u)	5.70	4³A', 4³A'', 5³A'', 1⁵A', 1⁵A'', 2⁵A''		
HSi ($A^2\Delta$) + Br (2P_u)	6.96	4 ¹ A', 4 ¹ A''		

Table S6. The adiabatic dissociation channels and the corresponding dissociation energies (eV), electronic states (Corresponds to the Fig. 1 in the main text to provide accurate values)

Fig. S1 PECs of HSiBr at the MRCI-F12/cc-pVQZ-F12 level for the lowest three states considering SOC effect (dashed line) and not considering SOC (solid line) effect: (a) along the H-Si bond length; (b) along the Si-Br bond length; (c) along the H-Si-Br bond angle; the other both geometric constants are fixed at the respective equilibrium values of the ground state.

Fig. S2 The spin-free components of the spin-coupled states #1–5: along the H–Si–Br bond angle. For each row, the other geometric constants are fixed at their respective equilibrium values of the ground state.