Supporting information for

"What is behind a gas stream scrubbing liquid? Monoethanolamine/water mixtures as seen by dielectric relaxation spectroscopy"

Vira Agie
ienko 1,2* and Richard Buchner^3

¹Laboratory of Engineering Chemistry, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., 603022 Nizhny Novgorod, Russian Federation; E-mail: vera.n.ageenko@gmail.com

²Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minina str., 603950 Nizhny Novgorod, Russian Federation.

³Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany.

density (ρ) ,	viscosity (η)	, and the deg	ree of MEA	protonation	$\alpha_{\rm MEA\cdot H^+}$	at 298.15 K	
$\frac{m_1}{(\text{mol}\cdot\text{kg}^{-1})}$	$\rho \; (\text{g-cm}^{-3})$	$\eta ~({\rm mPa}{\cdot}{\rm s})$	c_1 (M)	c_2 (M)	$x_1 \times 100$	$w_1 \times 100$	$\alpha_{\mathrm{MEA}\cdot\mathrm{H}^+}{}^a$ $ imes 100$
0.000	0.99703	0.890	0.000	55.34	0.000	0.000	
0.101	0.99721	0.939	0.100	55.02	0.1815	0.6126	1.762
0.254	0.99747	0.979	0.250	54.52	0.4562	1.530	1.119
0.517	0.99808	1.01	0.500	53.71	0.922	3.060	0.792
1.066	0.99916	1.06	1.000	52.07	1.885	6.114	0.561
2.275	1.00160	1.35	2.000	48.82	3.936	12.20	0.397
4.419	1.00582	1.77	3.500	43.97	7.374	21.25	0.300
7.087	1.01042	2.51	4.998	39.14	11.32	30.21	0.251
11.89	1.01676	4.00	6.996	32.72	17.61	42.03	0.212
19.04	1.02216	6.47	8.997	26.23	25.54	53.77	0.187
31.12	1.02547	10.5	11.00	19.62	35.92	65.53	0.169
67.52	1.02418	16.8	13.47	11.09	54.88	80.48	0.153
144.37	1.01960	19.2	14.99	5.765	72.23	89.81	0.145

0.000

100.0

100.0

Table S1: Molality (m_1) of MEA (1) in water (2), associated molar concentrations (c_1, c_2) , molar (x_1) and mass (w_1) fractions of the studied MEA/water mixtures, together with their density (ρ) , viscosity (η) , and the degree of MEA protonation $(\alpha_{\text{MEA}\cdot\text{H}^+})$ at 298.15 K.

^{*a*} Estimated from $pK_a = 9.5$ [1].

1.01142

18.6

Table S2: Static permittivities (ε_s), permittivities at infinite frequency (ε_∞), amplitudes (S_j ; j = 1...4), relaxation times (τ_j) and values of the reduced error function (σ) of the investigated MEA/water mixtures at 298.15 K. See Main Manuscript for the selected relaxation models; data for neat water were taken from Ref. [2].^{*a*}

16.56

c (M)	S_1	S_2	S_3	S_4	$ au_1 ext{(ps)}$	$ au_2 ext{(ps)}$	$ au_3 ext{(ps)}$	$ au_4 ext{(ps)}$	$\varepsilon_{\rm s}$	ε_∞	$10^2\sigma$
0.000			72.42	2.43			8.35	0.28	78.37	3.52	
0.100			71.99	2.32			8.46	0.36	77.83	3.52^{b}	0.66
0.250			71.79	2.22			8.67^{c}	0.50	77.53	3.52^{b}	1.63
0.500	0.39		70.07	2.95	$120^{b,d}$		9.09	0.79	76.92	3.52^{b}	1.51
1.000	0.32	6.40	63.30	2.36	111	16^{b}	9.39	0.33	75.91	3.52^{b}	1.92
2.000	1.71	12.12	53.11	2.07	66.9	16.4	10.7	1.49	73.63	4.62	1.58
3.500	1.99	21.43	40.59	1.82	104	22.9	12.3	0.92	70.23	4.41	1.40
4.998	3.10	27.95	29.38	1.39	111	29.3	14.1	1.62	66.71	4.89	0.52
6.996	4.13	34.79	16.38	1.62	156	41.5	16.0	3.84	62.01	5.09	0.61
8.997	7.41	35.50	7.62	2.00	190	54.7	19.6	2.80	56.86	4.34	0.20
11.00	9.07	30.44	5.68	1.68	276	78.9	24.8	2.43	50.88	4.02	0.68
13.50	10.23	21.77	5.28	1.37	399	113	33.9	3.53	42.61	3.95	0.18
14.99	11.02	16.34	4.65	1.37	439	115	33.3	3.28	37.07	3.68	0.18
16.56	10.57	10.92	4.02	1.42	457	99.2	30.4	3.82	30.45	3.51	0.14

^{*a*} The relative uncertainty of the obtained parameters is generally better than 1% for $\varepsilon_{\rm s}$, and 5% for τ_j , S_j and ε_{∞} . ^{*b*} Parameter not adjusted in the fit; ^{*c*} $\alpha_3 = 0.002$; ^{*d*} $\alpha_2 = 0.164$.

Figure S1: (a) Static permittivity, ε_s (black squares), and amplitudes S_2 (blue triangles) and S_3 (red circles) of the best-fitting relaxation model (Table S2) describing the dielectric spectra of MEA/water mixtures at 298.15 K. (b) Corresponding amplitudes S_1 (red circles) and S_4 (black triangles) and high-frequency permittivity, ε_{∞} (black squares). Filled symbols for ε_s , S_3 , S_4 & ε_{∞} are data for neat water taken from Ref. [2].

References

- M. Máté-Divó, L. Barcza, Investigation on the oligomerization of aminoalcohols in aqueous solution, Z. Phys. Chem. 190 (1995) 223-230.
- [2] A. Eiberweiser, A. Nazet, G. Hefter, R. Buchner, Ion hydration and association in aqueous potassium phosphate solutions, J. Phys. Chem. B 119 (2015) 5270-5281.