Supporting Information

Manipulation Magnetic Skyrmions via Two-Dimensional Multiferroics CuCrP₂Te₆ Monolayer

Minghao Liu^a, Tsz Lok Wan^a, Kaiying Dou^b, Lei Zhang^c, Wei Sun^d, Jiawei Jiang^e, Yandong Ma^b, Yuantong Gu^{*a} and Liangzhi Kou^{*a}

^aSchool of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia

^bSchool of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan 250100, P. R. China

^cSchool of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia

^dShandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China

^eTianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China

*Corresponding Authors: Yuantong.Gu@qut.edu.au, liangzhi.kou@qut.edu.au

Figure S1. (a) Side view of crystal structure of monolayer $CuCrP_2Te_6$ in PE state. (b) Phonon dispersion of PE $CuCrP_2Te_6$. (c) Spin charge density of monolayer $CuCrP_2Te_6$. (d) Phonon dispersion of AFE $CuCrP_2Te_6$.

Figure S2. Spin textures diagrams as a function of in-plane external magnetic field of monolayer $CuCrP_2Te_6$.

Figure S3. (a) Spin configurations as a function of external magnetic field and $D^2/|KJ|$ at 0K. (b) Energy barriers (blue line) and energy differences (red lines) between AFE and FE of monolayer CuCrP₂Te₆ under bi-axis strain, respectively. (c) The total energy of AFE (black line) and FE (red line) of monolayer CuCrP₂Te₆ under strain, respectively.