Supplementary information (SI) for

First-principles prediction of ferroelectric Janus Si₂XY (X/Y = S/Se/Te, $X \neq Y$) monolayer with negative Poisson Ratios

Yunlai Zhu ^a, Zihan Qu ^a, Jishun Zhang ^a, Xiaoteng Wang ^a, Shuo Jiang ^a, Zuyu Xu ^a, Fei Yang ^a, Zuheng Wu ^{a*}, and Yuehua Dai ^{a*}

^a School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.

Corresponding Authors

*E-mail: <u>wuzuheng@ahu.edu.cn</u> (Z.-H. Wu), <u>daiyuehua2013@163.com</u> (Y.-H. Dai)

Table 1. Calculated in-plane elastic constants C_{ij} (N m⁻¹) of Si₂SSe, Si₂STe and Si₂SeTe monolayer.

	C ₁₁	C ₁₂	C ₂₂	C ₆₆
Si ₂ SSe	89.753	-7.361	60.272	8.741
Si ₂ STe	76.360	-4.569	68.590	7.916
Si ₂ SeTe	67.235	-5.612	68.397	6.641

Fig.S1 Phonon dispersion of (a) Si₂STe and (b) Si₂SeTe monolayer, respectively.

Fig.S2 Total potential energy fluctuation and snapshots of atomic structure of (a) Si_2SSe , (b) Si_2STe and (c) Si_2SeTe monolayer at a temperature of 500 K from AIMD simulation under 0 ps and 10 ps.

Fig.S3 (a) The NPR of Janus Si₂XY monolayer as a function of the in-plane angle θ . The blue, pink and purple line represent Si₂SSe, Si₂STe and Si₂SeTe, respectively. (b) The strain-variation curve about the strain on *a*-axis with respect to the *b* direction. The evolution of local structures of the Janus Si₂XY monolayer in the *a*-*c* (c) and *b*-*c* (d) planes under uniaxial compression strain.

Fig.S4 Electronic band structures of (a) Si_2SSe , (b) Si_2STe and (c) Si_2SeTe monolayer with PBE calculation, respectively.

Fig.S5 The corresponding partial density of state (PDOS) of (a) Si₂STe and (b) Si₂SeTe monolayer, respectively.

Fig.S6 (a) Polarization P of monolayer Si₂SeTe as a function of normalized displacement along the *b*-axis. P_s and P_q represent the spontaneous and quanta polarization, respectively. (b) Energy curve with the P_s of Si₂SeTe. Phase transition barrier E_b and P_s are marked. (c) Temperature dependence of the average relative displacement between ions in Si₂SeTe using MD simulations. The final atomic structures of Si₂SeTe near the phase transition temperature are depicted.

Fig.S7 The AIMD simulations of Si_2STe monolayer with the time step of 4 ps at the temperature of 1200 K. The white, green and orange balls denote Si, S and Te atoms, respectively.

Fig.S8 (a) Electronic band structure of monolayer Si_2SSe with PBE method. (b) The energy shifting and band-edge positions as a function of the (c) *a*-axis and *b*-axis strain along two transport directions of Si_2SSe monolayers. The solid lines indicate the fitting curves.

Fig.S9 (a) Electronic band structure of monolayer Si_2STe with PBE method. (b) The energy shifting and band-edge positions as a function of the (c) *a*-axis and *b*-axis strain along two transport directions of Si_2TSe monolayers. The solid lines indicate the fitting curves.

Fig.S10 (a) Electronic band structure of monolayer Si_2SeTe with PBE method. (b) The energy shifting and band-edge positions as a function of the (c) *a*-axis and *b*-axis strain along two transport directions of Si_2SeTe monolayers. The solid lines indicate the fitting curves.