Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Information

FIG. S1. Spatial distribution of spin-polarized electron density of monolayer FeClSH for (a) FM state and (b) AFM state. Blue and red isosurfaces represent spin-up and spin-down electron density, respectively. The black box is a $2 \times 2 \times 1$ supercell.

FIG. S2. Orbital-resolved ΔE_{SOC} of the monolayer FeClSH for U = 0 eV and 1.4 eV. (a) Fe-*p* orbitals, (b) Cl-*p* orbitals, and (c) S-*p* orbitals for U = 0 eV. (d) Fe-*p* orbitals, (e) Cl-*p* orbitals, and (f) S-*p* orbitals for U = 1.4 eV.

Table S1. Lattice constant *a* (Å), bond angle (°), and $E_{AFM} - E_{FM}$ (meV per unit cell) for U = 0 eV and 1.4 eV.

U	а	Fe-Cl-Fe	Fe-S-Fe	$E_{\rm AFM} - E_{\rm FM}$
0	3.51	87.5	92.7	133.79
0	3.57	88.1	93.6	117.66
1.4	3.51	87.5	92.7	27.56
1.4	3.57	88.1	93.6	14.13

			<i>0</i> ⁺					0		
u	d_{xy}	d_{yz}	d_{z2}	d_{xz}	$d_{x^2-y^2}$	d_{xy}	d_{yz}	d_{z2}	d_{xz}	d_{x2-y2}
d_{xy}	0	1	0	0	-4	0	-1	0	0	4
$d_{\scriptscriptstyle yz}$	1	0	0	-1	0	-1	0	0	1	0
d_{z2}	0	0	0	3	0	0	0	0	-3	0
d_{xz}	0	-1	3	0	1	0	1	-3	0	-1
d_{x2-y2}	-4	0	0	1	0	4	0	0	-1	0
i (states/eV) 0	(a)	U = 0	eV		Ц					$\begin{array}{l} = -d_{xy} \\ = -d_{yz} \\ = -d_{z^2} \\ = -d_{xz} \\ = -d_{x^2-y^2} \end{array}$

Table S2. Matrix differences of $|\langle u, \alpha | L_z | o, \beta \rangle|^2 - |\langle u, \alpha | L_y | o, \beta \rangle|^2$ for Fe-*d* orbitals.

FIG. S3. PDOS of different atomic orbitals for (a) U = 0 eV and (b) U = 1.4 eV.

FIG. S4. Orbital-resolved band structures of spin-down without SOC for (a) U = 0 eV, (b) U = 1.4 eV, and (c) HSE06.

FIG. S5. Orbital-resolved band structures with SOC for U = 0 eV.

FIG. S6. Orbital-resolved band structures with SOC for U = 0 eV.

FIG. S7. Orbital-resolved band structures with SOC for U = 1.4 eV.

FIG. S8. Orbital-resolved band structures with SOC for U = 1.4 eV.

FIG. S9. (a) Band gaps located at K and K' valleys and band structures for (b) U = 0.753 eV and (c) 0.967 eV. (d) Band structure, (e) Berry curvature, and (f) edge state for U = 0.9 eV.

FIG. S10. AHC for U = 0.9 eV.