Design of MoS₂ Edge-Anchored Single-Atom Catalysts for Propane Dehydrogenation Driven by DFT and Microkinetic Model

Chunguang Dong,[†] Zhuangzhuang Lai,[†] P. Hu, Haifeng Wang*

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

[†]*C*. Dong and *Z*. Lai contributed equally to this work.

<i>k</i> -mesh	E/eV
$1 \times 2 \times 1$	-257.42
$1 \times 3 \times 1$	-257.44
$1 \times 4 \times 1$	-257.43
$1 \times 5 \times 1$	-257.44
1×10×1	-257.44
1×20×1	-257.44

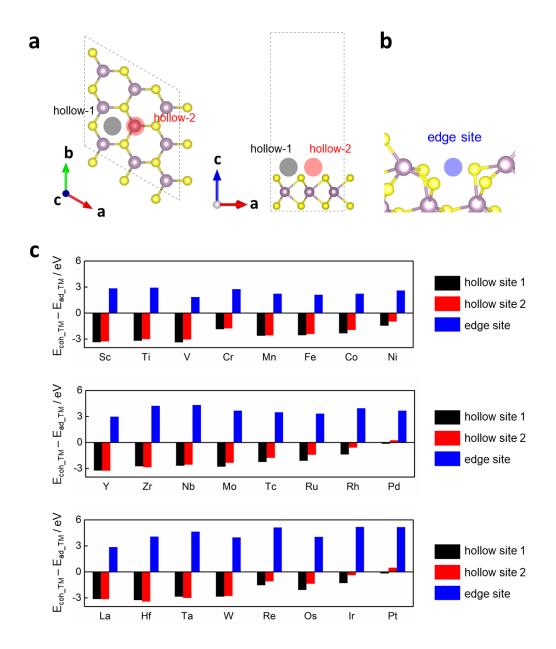
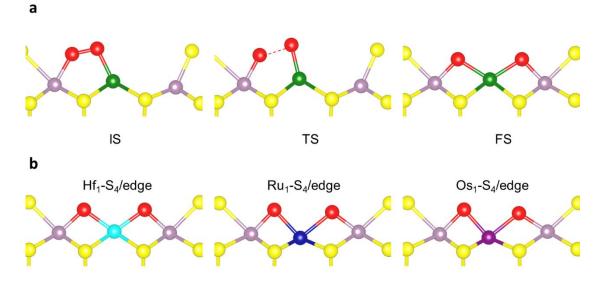

Table S1. Converge Test of *k*-points sampling using Sc₁-S₄/edge as an example

Table S2. The values of U - J parameters for DFT/PBE+U calculations


3d element	U - J/eV
Sc	2.11
Ti	2.58
V	2.72
Cr	2.79
Mn	3.06
Fe	3.29
Co	3.42
Ni	3.40

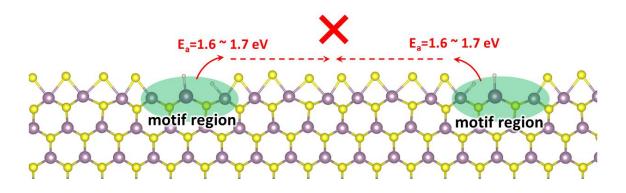
Supplementary Note 1

The anchoring site on the basal plane of MoS_2 is the hollow site coordinated by three S atoms. These hollow sites can be divided in two categories according to their geometry, known as the hollow-1 and hollow-2, respectively (Fig. S1a). In top view, hollow-1 site is positioned at the center of three adjacent Mo atoms, whereas the hollow-2 site is located directly above the Mo atom. The cohesive energies of each TM elements were adopted from experimental data.¹

Fig. S1. Illustration of the structural configuration for hollow site (a) and edge site (b). (c) Thermodynamic stability $(E_{coh_TM} - E_{ad_TM})$ of the transition metal anchored on the basal plane and edge of the monolayer MoS₂, where the cohesive energies E_{coh_TM} are obtained from experimental data.¹

Fig. S2. (a) Structures of the initial state, transition state, and final state of the dissociative adsorption of an O_2 molecule on the TM₁-S₄/edge (using Sc₁-S₄/edge catalyst as an example). (b) Final states of dissociative adsorption of an O_2 molecule on the TM₁-S₄/edge (TM=Hf, Ru, Os) catalysts.

Elementary reactions	E_{a}	ΔH	G_{a}	ΔG
$C_3H_8 + * \rightarrow [C_3H_7_H]*$	2.04	1.83	3.42	3.21
$[C_3H_7_H]^* \rightarrow [C_3H_6]^* + H_2$	0.48	-1.47	0.48	-2.81
$[MoH_SH_C_3H_6]^* \rightarrow [C_3H_6]^* + H_2$	0.36	-0.19	0.36	-1.53
$C_3H_8 + * \rightarrow [MoH_C_3H_7]*$	0.76	0.59	2.14	1.97
$[MoH_C_3H_7]^* \rightarrow [MoH_SH_C_3H_6]^*$	0.62	-0.03	0.62	-0.03
$[\mathrm{MoH}_{\mathrm{C}_{3}\mathrm{H}_{7}}]^{*} \rightarrow [2\mathrm{MoH}_{\mathrm{C}_{3}\mathrm{H}_{6}}]^{*}$	0.71	-0.32	0.71	-0.32
$[C_3H_7_H]^* \rightarrow [MoH_C_3H_7]^*$	0.10	-1.24	0.10	-1.24
$[MoH_SH]^* \rightarrow * + H_2$	0.36	0.04	0.36	-0.67
$[C_3H_6]^* \rightarrow * + C_3H_6$	1.22	1.22	0.03	-0.09
$[MoH_SH_C_3H_6]^* \rightarrow [MoH_SH]^* + C_3H_6$	1.00	1.00	0	-0.94
$[2\text{MoH}_C_3\text{H}_6]^* \rightarrow [2\text{MoH}]^* + C_3\text{H}_6$	0.88	0.88	0	-1.06
$[2MoH]^* \rightarrow * + H_2$	0.44	0.44	0	-0.27


Table S3. Energy barriers (E_a), enthalpy changes (ΔH), entropy-corrected energy barriers (G_a) and Gibbs energy changes (ΔG) of each elementary step for the PDH reaction on the Sc₁-S₄/edge catalyst. (unit: eV)

Elementary reactions	Reaction rate	Reversibility	Degree of rate control
$C_3H_8 + * \rightarrow [C_3H_7_H]*$	3.62×10 ⁻⁹	3.94×10 ⁻⁷	1.43×10 ⁻⁹
$[C_3H_7_H]^* \rightarrow [C_3H_6]^* + H_2$	1.21×10^{-8}	5.08×10^{-7}	5.20×10^{-7}
$[MoH_SH_C_3H_6]^* \rightarrow [C_3H_6]^* + H_2$	1.68×10^{-4}	2.53×10^{-3}	1.64×10^{-6}
$C_3H_8 + * \rightarrow [MoH_C_3H_7]*$	2.31×10^{-2}	9.96×10^{-1}	3.95×10 ⁻³
$[MoH_C_3H_7]^* \rightarrow [MoH_SH_C_3H_6]^*$	1.76×10^{-2}	2.28×10^{-4}	7.58×10^{-1}
$[MoH_C_3H_7]^* \rightarrow [2MoH_C_3H_6]^*$	5.51×10^{-3}	2.25×10^{-6}	2.38×10^{-1}
$[C_{3}H_{7}H]^{*} \rightarrow [MoH_{C_{3}}H_{7}]^{*}$	-8.48×10^{-9}	1.00	1.90×10 ⁻⁹
$[MoH_SH]^* \rightarrow {}^* + H_2$	1.74×10^{-2}	1.00	5.01×10^{-12}
$[C_3H_6]^* \rightarrow * + C_3H_6$	1.68×10^{-4}	1.00	8.95×10^{-18}
$[MoH_SH_C_3H_6]^* \rightarrow [MoH_SH]^* + C_3H_6$	1.74×10^{-2}	2.70×10^{-3}	1.74×10^{-4}
$[2\text{MoH}_C_3\text{H}_6]^* \rightarrow [2\text{MoH}]^* + C_3\text{H}_6$	5.51×10 ⁻³	2.40×10^{-1}	4.06×10^{-7}
$[2MoH]^* \rightarrow * + H_2$	5.51×10 ⁻³	1.00	3.18×10 ⁻⁶

Table S4. Key kinetic data for PDH reaction on Sc_1-S_4 /edge catalyst along all pathways: the reaction rates, reversibilities and degree of rate control for each elementary step.

Table S5. Coverages of all intermediates on Sc₁-S₄/edge catalyst at the steady state.

species	coverage
[C ₃ H ₆]*	1.71×10^{-5}
[C ₃ H ₇ _H]*	3.15×10^{-19}
[MoH_C ₃ H ₇]*	2.78×10^{-12}
[MoH_SH]*	9.03×10 ⁻⁹
[MoH_SH_C ₃ H ₆]*	9.31×10 ⁻¹⁶
[2MoH]*	1.57×10^{-6}
[2MoH_C ₃ H ₆]*	3.87×10^{-16}
*	1.00

Fig. S3. Energy barriers of the H atom escaped from the motif region (using Sc₁-S₄/edge catalyst as an example).

TM ₁ -S ₄ /edge	E_{a1}	ΔH_1	E_{a2}	ΔH_2	ΔH_3	ΔH_4
Sc	0.76	0.59	0.62	-0.03	1.00	0.04
Ru	0	-0.09	0.71	0.38	1.04	0.26
Rh	0.56	0.56	0.99	0.51	0.87	-0.35
Os	0	-0.43	0.98	0.13	1.30	0.59
Ir	0.14	0.38	0.93	0.59	0.48	0.14
Pt	1.63	0.64	0.79	0.86	1.01	-0.92

Table S6. Energy barriers and enthalpy changes of each elementary reaction step along path 2 on six TM₁-S₄/edge. (unit: eV) The subscript *i* (*i* = 1-4) represents the process of the abstraction of α -H, the abstraction of β -H, the desorption of the propylene, and the formation of H₂, respectively.

Table S7. Key kinetic data for PDH reaction on TM_1 -S₄/edge (TM= Pt, Rh, Ir, Os, Ru) catalysts along the dominant pathways: the energy barriers of the two dehydrogenation steps, the TOF, the energy barrier of first dehydrogenation process on TM_1 '-S₄/edge catalysts (E_a '), and the corrected TOF (TOF') on TM_1 '-S₄/edge (TM= Rh, Ir, Os, Ru). Note that DHS represents "dehydrogenation step".

	Pt ₁ -S ₄ /edge	Rh1-S4/edge	Ir ₁ -S ₄ /edge	Os ₁ -S ₄ /edge	Ru ₁ -S ₄ /edge
$E_{\rm a}$ of 1 st DHS/eV	1.63	0.56	0.14	0	0
$E_{\rm a}$ of 2 nd DHS/eV	0.79	0.99	0.93	0.63	0.71
TOF/site ⁻¹ s ⁻¹	6.22×10^{-5}	2.20×10^{-4}	4.80×10 ⁻³	23.5	18.4
$E_{\rm a}$ ' of 1 st DHS/eV	١	0.84	0.05	0.90	1.06
TOF'/site ⁻¹ s ⁻¹	\	1.05×10^{-2}	1.98×10^{-2}	2.52×10^{-2}	1.21×10^{-1}

Table S8. Enthalpy changes of six screened TM₁-S₄/edge catalysts between two different motif configuration states ($\Delta E = E(TM_1)^2 - S_4/edge SACs$) – $E(TM_1 - S_4/edge SACs)$).

TM ₁ -S ₄ /edge	Sc	Pt	Rh	Ir	Os	Ru
$\Delta E / eV$	0.32	0.72	0.30	0.11	-0.63	-0.11

Table S9. The Gibbs free energy change (ΔG) of the reaction between fluttered S atom and H₂ forming H₂S at 900 K. Note that the Gibbs free energies of H₂, and H₂S are taken from handbook.²

TM ₁ -S ₄ /edge	ΔG /eV
Ir	1.70
Rh	1.19
Os	2.14
Ru	1.71

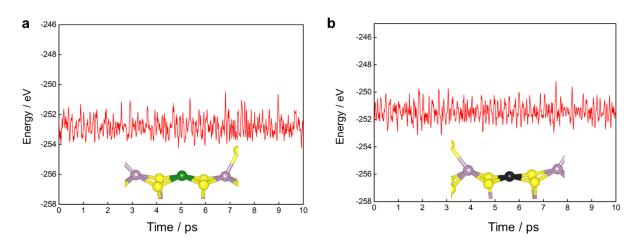


Fig. S4. AIMD simulation of (a) Sc_1 - S_4 /edge and (b) Pt_1 - S_4 /edge catalysts at the temperature of 900 K.

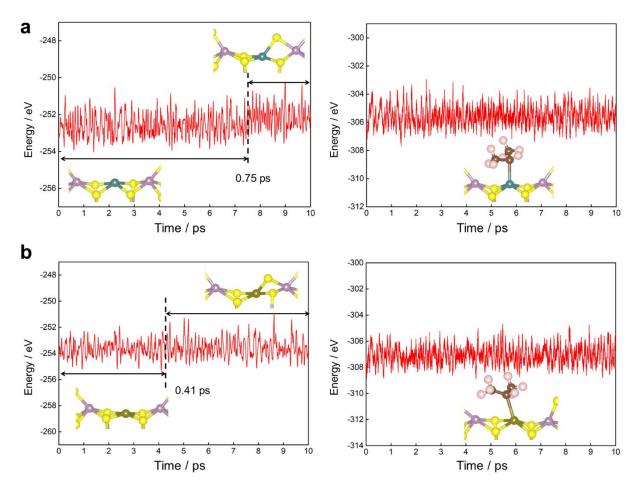


Fig. S5. AIMD simulations of (a) Rh_1 -S4/edge and (b) Ir_1 -S4/edge catalysts without or with a propyl adsorbed on the single atom at 900 K.

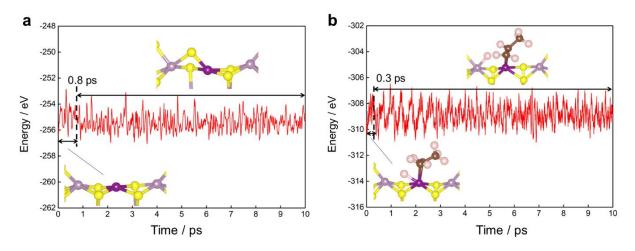


Fig. S6. AIMD simulations of Os_1 -S4/edge catalyst (a) without and (b) with a propyl adsorbed on the Os atom at 900 K.

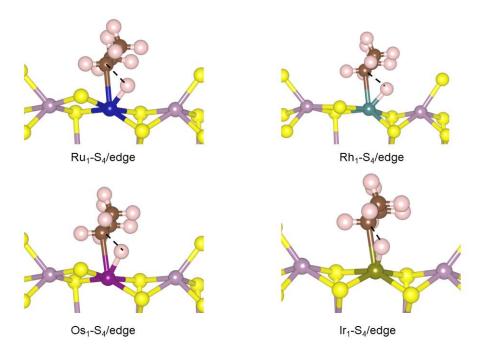
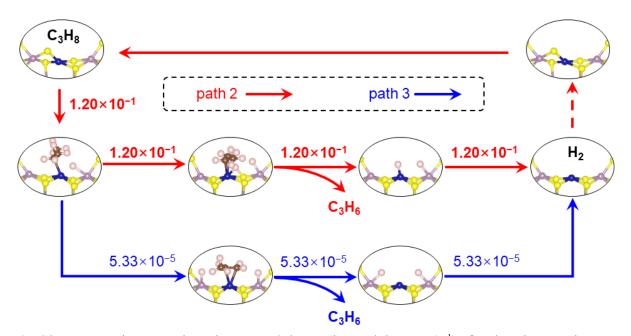



Fig. S7. Transition states of first dehydrogenation step on TM_1 '-S₄/edge (TM = Ru, Rh, Os, Ir) catalysts. Note that at the transition state on Ir₁-S₄/edge catalyst, the two-coordinated S atom returns to its original position.

Fig. S8. PDH reaction network on the Ru₁'-S₄/edge catalyst and the TOF (s⁻¹) of each path at steady state. The reaction condition: T = 900 K, the initial partial pressures $p_{C3H8} = 0.3$ bar and $p_{C3H6} = p_{H2} = 0$ bar.³⁻⁶

Table S10. Energy barriers and enthalpy changes of deep dehydrogenations of adsorbed propylene assisted by TM and the unsaturated Mo, respectively, on Ru₁-S₄/edge catalyst. (unit: eV)

	Ru ₁ -S ₄ /edge catalyst
$E_{\rm a}$ (assisted by Mo)	1.38
ΔH (assisted by Mo)	1.38
$E_{\rm a}$ (assisted by TM)	1.19
ΔH (assisted by TM)	1.19

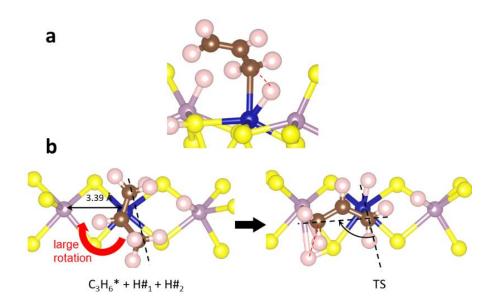


Fig. S9. (a) Transition state structures of the dehydrogenation of the methyl of the propylene on the Ru₁-

 S_4 /edge catalyst. (b) Initial and transition state structures of the dehydrogenation of the methyl assisted by the unsaturated Mo atom requiring a large angle of rotation for the adsorbed propylene on Ru_1 - S_4 /edge catalyst.

REFERENCES

C. Kittel. *Introduction to Solid State Physics*, 8th ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2021; pp 50.

(2) M. W. Chase and N. I. S. Organization, *NIST-JANAF thermochemical tables*, American Chemical Society Washington, DC, 1998.

(3) R. T. Hannagan, G. Giannakakis, R. Réocreux, J. Schumann, J. Finzel, Y. Wang, A. Michaelides, P. Deshlahra, P. Christopher, M. Flytzani-Stephanopoulos, M. Stamatakis and E. C. H. Sykes, Science, 2021, 372, 1444-1447.

(4) C. Dong, Z. Lai and H. Wang, ACS Catal., 2023, 13, 5529-5537.

Q. Sun, N. Wang, Q. Fan, L. Zeng, A. Mayoral, S. Miao, R. Yang, Z. Jiang, W. Zhou, J. Zhang, T. Zhang, J. Xu, P. Zhang, J. Cheng, D.-C. Yang, R. Jia, L. Li, Q. Zhang, Y. Wang, O. Terasaki and J. Yu, *Angew. Chem., Int. Ed.*, 2020, **59**, 19450-19459.

(6) L. Shi, G. M. Deng, W. C. Li, S. Miao, Q. N. Wang, W. P. Zhang and A. H. Lu, *Angew. Chem., Int. Ed.,* 2015, **54**, 13994-13998.