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A. Fully Trapped Polarons
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FIG. S1. (a-c) Well localized charge density profiles for fully trapped electron polarons in their ground state of TiO2, MgFe2O4,
and Mn2O4. Isocharge surfaces were respectively plotted at 0.0052 e/Å3, 0.0056 e/Å3, and 0.0036 e/Å3. (d-f) Density of
states (DOS) plots showing a fully trapped polaron state (at Ep) well below the conduction band minimum of their respective
material. The projected DOS (PDOS) of the d-orbitals on the trapping cation site is shown in red and the total DOS (TDOS)
is shown in grey. Mn2O4 shows some additionally delocalization in the fully trapped state due to p-orbital hybridization, but
less so than at the transition state as shown in the main manuscript.
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B. Total Energy Fits

The 1D Holstein tight-binding model was fitted to match the ratios Ea/(ε+ − ε−) and (εc − ε+)/(ε+ − ε−) at
the transition state (x̄ = 0) for each respective material calculation in the main manuscript. In the case of TiO2

2L hopping, where the excited state is pushed into the conduction band, only the first parameter was fitted. The
resulting fits are meant to be qualitatively expressive of the general physical trends and not quantitative.
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all occupied states wavefunctions

|ya i = Â
m

cm,a |fmi , (3)

where fm is the tight-binding orbital on site m. The lattice term
in Eq. (2) then captures the energy cost associated with a polaron
distortion on each site given by

Elat =
1
2

kx2
m (4)

such that k represents the lattice stiffness and the coordinate xm

captures the non-equilibrium lattice distortion at site m. Typically
one employs normalized unitless coordinates defining xm = 0 in
the absence of any distortion and xm = 1 at the minimum energy
configuration of a small polaron. Lastly, the electron-phonon cou-
pling contribution in Eq. (1) is defined as

Eel-ph = � Â
a2occ

Â
m

|cm,a |2gxm (5)

with the electron-phonon coupling g being identical on all sites in
this representation – though this is not strictly necessary.?

To solve Eq. (2) one needs to obtain the occupied wavefunction
coefficients (cm,a ) in Eq. (3). This can be accomplished by mini-
mizing Eq. (1) in the form of a Lagrangian function? employing
the orthonormality constraint that all wavefunctions are subject
to

⌦
ya

��yb
↵

= dab (6)

with dab being the Kronecker delta function. From this a single-
particle Hamiltonian matrix [H] is obtained whose matrix ele-
ments can be expressed as

Hmn =

8
><
>:

em �gxm ; n = m
Vmn ; n = m±1
0 ; otherwise

(7)

where periodic boundary conditions are typically employed in an
N-site model resulting in n = N + 1 ! n = 1 and vice versa. To
simplify the analysis we assume that all onsite terms are the same
such that em = eo, as well all band coupling terms are assumed to
be identical in the form of Vmn = �V . Though, those directly par-
ticipating in small polaron hopping may differ from the band cou-
pling due to localization properties. This single-particle Hamilto-
nian in Eq. (7) is analogous to that employed in DFT, from which
quantities such as the density of states (DOS) are extracted, and
is helpful for the interpretation of polaron coupling properties in
DFT calculations as we shall see in Sec. ??. Lastly, we are utilizing
a 1D Hamiltonian for the sake of simplicity but the approach can
be similarly extended to 2D & 3D.?

As noted, due to localized orbital interactions, the inter-site
coupling of a hopping polaron may not necessarily be the same
as that determining the kinetic energy of a band. Thus, it is help-
ful define a modified form of Eq. (7) wherein two neighbouring
polaron indices a = m and a = m + 1 are undertaking a hopping

transition can be defined as
"

Haa Hab

Hba Hbb

#
=

"
eo �gxa Vab

Vab eo �gxb

#
(8)

which is a sub-matrix of larger N-site Hamiltonian given by
Eq. (7) that is Hermitian. However, when only two sites are con-
sidered (N = 2), the combination of Eq. (7) & Eq. (8) reduces to
the Marcus-Hush model. Lastly, in the interpretation of small po-
laron hopping sometimes it is helpful to make Vab a function of
nuclear coordinates as we shall explore in Sec. ??.

Though Eqs. (1)–(7) can be employed to explore polaron for-
mation phenomenologically,? in this study it will be primarily
applied to describe the hopping of an already formed polaron.
To this end, it is helpful to employ reduced a reduced hopping
coordinate x̄ 2 [�1 ! +1], which undertakes the two extremity
mappings given below

x̄ = �1 ) xm =

8
><
>:

0 ; m 6= a,m 6= b
1 ; m = a
0 ; m = b

(9)

x̄ = +1 ) xm =

8
><
>:

0 ; m 6= a,m 6= b
0 ; m = a
1 ; m = b

(10)

and between these boundaries x̄ is determined by linear interpola-
tion. Meaning when x̄ = �1 the polaron is at its minimum energy
coordinate on site a and, vice versa, when x̄ = +1 the polaron
is at its minimum energy coordinate on site b during a hopping
transition. This is based on the assumption that lattice distortions
xm on all other coordinates, such as through thermal excitation,
in a solid can be ignored with negligible error when interpreting
hopping processes.

2.2 Relation to the Marcus-Hush Model

The use of a reduced coordinate, such as x̄, is foundational to
Marcus-Hush theory and thus enables a direct comparison to Hol-
stein’s model. However, to arrive at the Marcus-Hush model it is
helpful to work with the density matrix of the system

"
raa rab

rba rbb

#
= Â

a2(+,�)

fa{ya}{ya}† (11)

where fa is the occupation fraction of eigenstate a and {ya} is
a vector matrix containing all the coefficients cm,a as per Eq. (3).
Where the lower eigenstate has energy e� and the higher eigen-
state has energy e+ in Eq. (8). This then allows the total energy
a two-site system to be compactly written as

Etot =[raa(eo�2lxa)+rbb(eo�2lxb)�2Jrab

+lx2
a +lx2

b] (12)

which follows directly from Eqs. (1) though (5). To ensure that
the Marcus-Hush minima occur at x̄ = ±1 Eq. (12) also defines
k = g = l , where l is the heterogenous reorganization and is
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where fm is the tight-binding orbital on site m. The lattice term
in Eq. (2) then captures the energy cost associated with a polaron
distortion on each site given by

Elat =
1
2

kx2
m (4)

such that k represents the lattice stiffness and the coordinate xm

captures the non-equilibrium lattice distortion at site m. Typically
one employs normalized unitless coordinates defining xm = 0 in
the absence of any distortion and xm = 1 at the minimum energy
configuration of a small polaron. Lastly, the electron-phonon cou-
pling contribution in Eq. (1) is defined as

Eel-ph = � Â
a2occ

Â
m

|cm,a |2gxm (5)

with the electron-phonon coupling g being identical on all sites in
this representation – though this is not strictly necessary.?

To solve Eq. (2) one needs to obtain the occupied wavefunction
coefficients (cm,a ) in Eq. (3). This can be accomplished by mini-
mizing Eq. (1) in the form of a Lagrangian function? employing
the orthonormality constraint that all wavefunctions are subject
to

⌦
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with dab being the Kronecker delta function. From this a single-
particle Hamiltonian matrix [H] is obtained whose matrix ele-
ments can be expressed as

Hmn =

8
><
>:

em �gxm ; n = m
Vmn ; n = m±1
0 ; otherwise

(7)

where periodic boundary conditions are typically employed in an
N-site model resulting in n = N + 1 ! n = 1 and vice versa. To
simplify the analysis we assume that all onsite terms are the same
such that em = eo, as well all band coupling terms are assumed to
be identical in the form of Vmn = �V . Though, those directly par-
ticipating in small polaron hopping may differ from the band cou-
pling due to localization properties. This single-particle Hamilto-
nian in Eq. (7) is analogous to that employed in DFT, from which
quantities such as the density of states (DOS) are extracted, and
is helpful for the interpretation of polaron coupling properties in
DFT calculations as we shall see in Sec. ??. Lastly, we are utilizing
a 1D Hamiltonian for the sake of simplicity but the approach can
be similarly extended to 2D & 3D.?

As noted, due to localized orbital interactions, the inter-site
coupling of a hopping polaron may not necessarily be the same
as that determining the kinetic energy of a band. Thus, it is help-
ful define a modified form of Eq. (7) wherein two neighbouring
polaron indices a = m and a = m + 1 are undertaking a hopping

transition can be defined as
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Vab eo �gxb

#
(8)

which is a sub-matrix of larger N-site Hamiltonian given by
Eq. (7) that is Hermitian. However, when only two sites are con-
sidered (N = 2), the combination of Eq. (7) & Eq. (8) reduces to
the Marcus-Hush model. Lastly, in the interpretation of small po-
laron hopping sometimes it is helpful to make Vab a function of
nuclear coordinates as we shall explore in Sec. ??.

Though Eqs. (1)–(7) can be employed to explore polaron for-
mation phenomenologically,? in this study it will be primarily
applied to describe the hopping of an already formed polaron.
To this end, it is helpful to employ reduced a reduced hopping
coordinate x̄ 2 [�1 ! +1], which undertakes the two extremity
mappings given below

x̄ = �1 ) xm =
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1 ; m = a
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(9)
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0 ; m = a
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and between these boundaries x̄ is determined by linear interpola-
tion. Meaning when x̄ = �1 the polaron is at its minimum energy
coordinate on site a and, vice versa, when x̄ = +1 the polaron
is at its minimum energy coordinate on site b during a hopping
transition. This is based on the assumption that lattice distortions
xm on all other coordinates, such as through thermal excitation,
in a solid can be ignored with negligible error when interpreting
hopping processes.

2.2 Relation to the Marcus-Hush Model

The use of a reduced coordinate, such as x̄, is foundational to
Marcus-Hush theory and thus enables a direct comparison to Hol-
stein’s model. However, to arrive at the Marcus-Hush model it is
helpful to work with the density matrix of the system

"
raa rab

rba rbb

#
= Â

a2(+,�)

fa{ya}{ya}† (11)

where fa is the occupation fraction of eigenstate a and {ya} is
a vector matrix containing all the coefficients cm,a as per Eq. (3).
Where the lower eigenstate has energy e� and the higher eigen-
state has energy e+ in Eq. (8). This then allows the total energy
a two-site system to be compactly written as

Etot =[raa(eo�2lxa)+rbb(eo�2lxb)�2Jrab

+lx2
a +lx2

b] (12)

which follows directly from Eqs. (1) though (5). To ensure that
the Marcus-Hush minima occur at x̄ = ±1 Eq. (12) also defines
k = g = l , where l is the heterogenous reorganization and is
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where fm is the tight-binding orbital on site m. The lattice term
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distortion on each site given by
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such that k represents the lattice stiffness and the coordinate xm

captures the non-equilibrium lattice distortion at site m. Typically
one employs normalized unitless coordinates defining xm = 0 in
the absence of any distortion and xm = 1 at the minimum energy
configuration of a small polaron. Lastly, the electron-phonon cou-
pling contribution in Eq. (1) is defined as
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|cm,a |2gxm (5)

with the electron-phonon coupling g being identical on all sites in
this representation – though this is not strictly necessary.?

To solve Eq. (2) one needs to obtain the occupied wavefunction
coefficients (cm,a ) in Eq. (3). This can be accomplished by mini-
mizing Eq. (1) in the form of a Lagrangian function? employing
the orthonormality constraint that all wavefunctions are subject
to
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with dab being the Kronecker delta function. From this a single-
particle Hamiltonian matrix [H] is obtained whose matrix ele-
ments can be expressed as

Hmn =
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0 ; otherwise
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where periodic boundary conditions are typically employed in an
N-site model resulting in n = N + 1 ! n = 1 and vice versa. To
simplify the analysis we assume that all onsite terms are the same
such that em = eo, as well all band coupling terms are assumed to
be identical in the form of Vmn = �V . Though, those directly par-
ticipating in small polaron hopping may differ from the band cou-
pling due to localization properties. This single-particle Hamilto-
nian in Eq. (7) is analogous to that employed in DFT, from which
quantities such as the density of states (DOS) are extracted, and
is helpful for the interpretation of polaron coupling properties in
DFT calculations as we shall see in Sec. ??. Lastly, we are utilizing
a 1D Hamiltonian for the sake of simplicity but the approach can
be similarly extended to 2D & 3D.?

As noted, due to localized orbital interactions, the inter-site
coupling of a hopping polaron may not necessarily be the same
as that determining the kinetic energy of a band. Thus, it is help-
ful define a modified form of Eq. (7) wherein two neighbouring
polaron indices a = m and a = m + 1 are undertaking a hopping
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which is a sub-matrix of larger N-site Hamiltonian given by
Eq. (7) that is Hermitian. However, when only two sites are con-
sidered (N = 2), the combination of Eq. (7) & Eq. (8) reduces to
the Marcus-Hush model. Lastly, in the interpretation of small po-
laron hopping sometimes it is helpful to make Vab a function of
nuclear coordinates as we shall explore in Sec. ??.

Though Eqs. (1)–(7) can be employed to explore polaron for-
mation phenomenologically,? in this study it will be primarily
applied to describe the hopping of an already formed polaron.
To this end, it is helpful to employ reduced a reduced hopping
coordinate x̄ 2 [�1 ! +1], which undertakes the two extremity
mappings given below
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and between these boundaries x̄ is determined by linear interpola-
tion. Meaning when x̄ = �1 the polaron is at its minimum energy
coordinate on site a and, vice versa, when x̄ = +1 the polaron
is at its minimum energy coordinate on site b during a hopping
transition. This is based on the assumption that lattice distortions
xm on all other coordinates, such as through thermal excitation,
in a solid can be ignored with negligible error when interpreting
hopping processes.

2.2 Relation to the Marcus-Hush Model

The use of a reduced coordinate, such as x̄, is foundational to
Marcus-Hush theory and thus enables a direct comparison to Hol-
stein’s model. However, to arrive at the Marcus-Hush model it is
helpful to work with the density matrix of the system
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rba rbb
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a2(+,�)

fa{ya}{ya}† (11)

where fa is the occupation fraction of eigenstate a and {ya} is
a vector matrix containing all the coefficients cm,a as per Eq. (3).
Where the lower eigenstate has energy e� and the higher eigen-
state has energy e+ in Eq. (8). This then allows the total energy
a two-site system to be compactly written as

Etot =[raa(eo�2lxa)+rbb(eo�2lxb)�2Jrab

+lx2
a +lx2

b] (12)

which follows directly from Eqs. (1) though (5). To ensure that
the Marcus-Hush minima occur at x̄ = ±1 Eq. (12) also defines
k = g = l , where l is the heterogenous reorganization and is
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bridized with its surrounding oxygen atoms than in the other two
materials (compare Figs. 7e & 7g).

Together these three examples, while not universally expan-
sive, do demonstrate that crystalline symmetries can play an im-
portant role in polaron hopping properties – in a manner that is
distinct from the typical isotropic considerations of Marcus-Hush
theory.20–24,34 Furthermore, we do not assert that the electron-
electron interactions (and thus polaron properties) for these ex-
amples are definitive for a given material (e.g., the values of J and
l may alter with different functionals), but are merely demon-
strative of the important crystalline-orbital symmetries that are
often impact upon small polaron hopping and the interpretative
model employed as we shall discuss next.

3.5 On the Relative Suitability of Marcus and Holstein Phe-
nomenological Interpretations

Next we wish to asses the degree to which lattice-orbital interac-
tions, ultimately determining the characteristics of inter-site cou-
pling (J), weight the balance of physical properties towards ei-
ther a Holstein (multi-site) or a Marcus-type (two-site) interpre-
tation. When a small polaron is deeply bound within the band
gap of a material both the Holstein and Marcus models provide
a fair description of the ground-state (y�) localization properties
at x̄ = ±1 in Figs. 2 & 4 (i.e., around approximately one lattice
site). This is shown in the Supplementary Information for the
three materials provided in Fig. 7. Thus, within materials the
primary short-coming of the Marcus (two-site) interpretation typ-
ically arises at the transition state (x̄ = 0 in Fig. 2) which assumed
to be decomposable into the strongly localized bonding and anti-
bonding states

y� =
1p
2

(
1
1

)
(22)

y+ =
1p
2

(
1
�1

)
(23)

following the notation in Eq. (11). The issue is that a two-site
(Marcus-type) interpretation of the hopping physics becomes a
less favourable interpretation of the transition state (at x̄ = 0), and
thus the overall hopping dynamics, as e� and/or e+ are driven
progressively closer to the material band edges (positioned at e =

0 in Fig. 4). That is, as band coupling becomes more strongly
determinant of the transition state properties.

From a deeper exploration of the results in Fig. 4 one can di-
rectly see how this is often dictated by the inter-site coupling J,
which in turn is strongly impacted by lattice-orbital interactions
as discussed in Secs. 3.3 & 3.4. The hopping properties of TiO2

provide a particularly powerful demonstration of this in Fig. 7a-d.
While a two-site (Marcus-type) interpretation is perfectly suitable
at x̄ = 0 through to x̄ = ±1 for hopping in the weakly coupled 1L
orbital connection (see Fig. 7c-d), a two-site interpretation holds
up far less robustly along the strongly coupled 2L hopping di-
rection in Fig. 7a-b. In this respect the TiO2 2L-hopping |y�|2
charge density at the transition state (x̄ = 0) shows good localiza-
tion properties in Fig. 7a. However, its counterpart |y+|2 is driven

well into the conduction band by the sizeable 2L-coupling where
it becomes nearly indistinguishably delocalized within it as shown
in Figs. 7b & ??a. In this stronger coupling context a Holstein
phenomenological interpretation is better suited to describe the
system, as can be seen in the parameterized model wavefunction
and single-particle energy plots in Fig. ??b-c. In the same spirt
we see a similar delocalization trend of the exited transition state
(y+) for MgFe2O4 in Fig. ??d, due to the J driven close proximity
of e+ to the conduction band edge in Fig. 7f.82 This again, places,
the Holstein model in more favourable framework to capture the
transition state hopping properties as shown in Fig. ??e-f. Al-
though, delocalization is less prominent in this example. Finally,
even when the coupling J is reduced through lattice-orbital inter-
actions as per Mn2O4 in Figs. 7g-h, the excited state (e+) can still
sometimes be pushed close enough to the conduction band such
that the band-interaction delocalization physics captured by the
Holstein model still provides a more favourable physical interpre-
tation of the entire hopping process (see Figs. ??g-i). Indeed, this
final Mn2O4 example (in Figs. ??g-i and Figs. 7g-h) demonstrates
that character of y+ and y� can both be impacted through delo-
calization interactions when they approach the band edges. The
most logical consequence of this would be the possibility of tran-
sitions directly into the conduction band as per the findings in
Fig. 5. However, a full time-dependent DFT study of such transi-
tions is better left for future work.

All the model parameterizations provided in Fig. ?? were set
so as to preserve the relative offsets between single-particle states
and with respect to the hopping activation energy per the first-
principles results reported in Sec. 3.5. The corresponding pa-
rameterized total energy plots can be found in the Supple-
mentary Information. While the Holstein model does always
not perfectly encapsulate all the properties of a first-principles
Hamiltonian (e.g., the precise degree of delocalization), the bal-
ance of physical properties present in the hopping process can
often lend it to be a more robust physical interpretation frame-
work compared to Marcus-type (two-site) model interpretation.
They key point is that material interactions, of which are lattice-
orbital interactions are a subset, can often determine the degree
of suitability for either the Holstein (multi-site) or Marcus (two-
site) interpretations of polaron hopping. One should weight the
balance of physical properties when option to employ either phe-
nomenological approach. The physical favourability of a given
interpretation framework is, moreover, often strongly impacted
by orbital-lattice interactions. In this respect, oxides are an ideal
material system for demonstrating these properties and the suit-
ability of a given physicochemical interpretation.

|y+|2

4 Conclusion
In this work we employed a chemical perspective to overview how
a formal relation between the Marcus-Hush and Holstein theo-
retical frameworks can be arrived at within a semi-classical de-
scription. In essence, the Marcus-Hush model can be extracted
from a two-site limit approximation to the Holstein model – in
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bridized with its surrounding oxygen atoms than in the other two
materials (compare Figs. 7e & 7g).

Together these three examples, while not universally expan-
sive, do demonstrate that crystalline symmetries can play an im-
portant role in polaron hopping properties – in a manner that is
distinct from the typical isotropic considerations of Marcus-Hush
theory.20–24,34 Furthermore, we do not assert that the electron-
electron interactions (and thus polaron properties) for these ex-
amples are definitive for a given material (e.g., the values of J and
l may alter with different functionals), but are merely demon-
strative of the important crystalline-orbital symmetries that are
often impact upon small polaron hopping and the interpretative
model employed as we shall discuss next.

3.5 On the Relative Suitability of Marcus and Holstein Phe-
nomenological Interpretations

Next we wish to asses the degree to which lattice-orbital interac-
tions, ultimately determining the characteristics of inter-site cou-
pling (J), weight the balance of physical properties towards ei-
ther a Holstein (multi-site) or a Marcus-type (two-site) interpre-
tation. When a small polaron is deeply bound within the band
gap of a material both the Holstein and Marcus models provide
a fair description of the ground-state (y�) localization properties
at x̄ = ±1 in Figs. 2 & 4 (i.e., around approximately one lattice
site). This is shown in the Supplementary Information for the
three materials provided in Fig. 7. Thus, within materials the
primary short-coming of the Marcus (two-site) interpretation typ-
ically arises at the transition state (x̄ = 0 in Fig. 2) which assumed
to be decomposable into the strongly localized bonding and anti-
bonding states

y� =
1p
2

(
1
1

)
(22)

y+ =
1p
2

(
1
�1

)
(23)

following the notation in Eq. (11). The issue is that a two-site
(Marcus-type) interpretation of the hopping physics becomes a
less favourable interpretation of the transition state (at x̄ = 0), and
thus the overall hopping dynamics, as e� and/or e+ are driven
progressively closer to the material band edges (positioned at e =

0 in Fig. 4). That is, as band coupling becomes more strongly
determinant of the transition state properties.

From a deeper exploration of the results in Fig. 4 one can di-
rectly see how this is often dictated by the inter-site coupling J,
which in turn is strongly impacted by lattice-orbital interactions
as discussed in Secs. 3.3 & 3.4. The hopping properties of TiO2

provide a particularly powerful demonstration of this in Fig. 7a-d.
While a two-site (Marcus-type) interpretation is perfectly suitable
at x̄ = 0 through to x̄ = ±1 for hopping in the weakly coupled 1L
orbital connection (see Fig. 7c-d), a two-site interpretation holds
up far less robustly along the strongly coupled 2L hopping di-
rection in Fig. 7a-b. In this respect the TiO2 2L-hopping |y�|2
charge density at the transition state (x̄ = 0) shows good localiza-
tion properties in Fig. 7a. However, its counterpart |y+|2 is driven

well into the conduction band by the sizeable 2L-coupling where
it becomes nearly indistinguishably delocalized within it as shown
in Figs. 7b & ??a. In this stronger coupling context a Holstein
phenomenological interpretation is better suited to describe the
system, as can be seen in the parameterized model wavefunction
and single-particle energy plots in Fig. ??b-c. In the same spirt
we see a similar delocalization trend of the exited transition state
(y+) for MgFe2O4 in Fig. ??d, due to the J driven close proximity
of e+ to the conduction band edge in Fig. 7f.82 This again, places,
the Holstein model in more favourable framework to capture the
transition state hopping properties as shown in Fig. ??e-f. Al-
though, delocalization is less prominent in this example. Finally,
even when the coupling J is reduced through lattice-orbital inter-
actions as per Mn2O4 in Figs. 7g-h, the excited state (e+) can still
sometimes be pushed close enough to the conduction band such
that the band-interaction delocalization physics captured by the
Holstein model still provides a more favourable physical interpre-
tation of the entire hopping process (see Figs. ??g-i). Indeed, this
final Mn2O4 example (in Figs. ??g-i and Figs. 7g-h) demonstrates
that character of y+ and y� can both be impacted through delo-
calization interactions when they approach the band edges. The
most logical consequence of this would be the possibility of tran-
sitions directly into the conduction band as per the findings in
Fig. 5. However, a full time-dependent DFT study of such transi-
tions is better left for future work.

All the model parameterizations provided in Fig. ?? were set
so as to preserve the relative offsets between single-particle states
and with respect to the hopping activation energy per the first-
principles results reported in Sec. 3.5. The corresponding pa-
rameterized total energy plots can be found in the Supple-
mentary Information. While the Holstein model does always
not perfectly encapsulate all the properties of a first-principles
Hamiltonian (e.g., the precise degree of delocalization), the bal-
ance of physical properties present in the hopping process can
often lend it to be a more robust physical interpretation frame-
work compared to Marcus-type (two-site) model interpretation.
They key point is that material interactions, of which are lattice-
orbital interactions are a subset, can often determine the degree
of suitability for either the Holstein (multi-site) or Marcus (two-
site) interpretations of polaron hopping. One should weight the
balance of physical properties when option to employ either phe-
nomenological approach. The physical favourability of a given
interpretation framework is, moreover, often strongly impacted
by orbital-lattice interactions. In this respect, oxides are an ideal
material system for demonstrating these properties and the suit-
ability of a given physicochemical interpretation.
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4 Conclusion
In this work we employed a chemical perspective to overview how
a formal relation between the Marcus-Hush and Holstein theo-
retical frameworks can be arrived at within a semi-classical de-
scription. In essence, the Marcus-Hush model can be extracted
from a two-site limit approximation to the Holstein model – in
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FIG. S2. Hostein 1D model total energy fits for three of the hopping cases studied in the manuscript. (a) TiO2 hopping fit in
the 2L direction. (b) MgFe2O4 hopping fit. (c) Mn2O4 hopping fit. The corresponding single-particle energy and wavefunction
plots can be found in the main manuscript.

C. Model Codes

Codes for the model calculations employed in this study can be found here:
———- http://www.physics.mcgill.ca/~bevankh/Codes/MarcusHolsteinPolaron2023.zip
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