On the mechanical response of graphene-capped copper nanoparticles

Gabriel J. Olguín-Orellana, ^a Juan A. de la Rosa Abad, ^b María B. Camarada, ^c Sergio J. Mejía-Rosales, ^d Jans Alzate-Morales ^a and Marcelo M. Mariscal *b

Electronic Supplementary Information

Table S1 Summary of the atomic composition for the two systems which were studied.

System	Cu atoms (NP)	Cu atoms (bulk surface)	C atoms	H atoms	Total atoms
Cu NP	9201	13312	-	-	22513
Cu@G NP	9201	13312	5068	728	28309

Fig. S1 Stress-strain curves for the six repetitions of the simulation ran for the Cu and Cu@G NPs systems.

^{a.} Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineerin ^{b.} INFIQC, CONICET. Departamento de Química Teórica y Computacional, Facultad $c_{Q}^{\mathbb{N}}$ marcelo.mariscal@unc.edu.ar

^c Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 364 ^d Centro de Investigación en Ciencias Físico-Matemáticas (CICFIM), Facultad de Cie Garza, Nuevo León, México.

15

4

di.

Please do not adjust r

Journal Name

Fig. S2 Dislocation density and HCP atoms vs strain curves for the six repetitions of the simulation ran for the (a) Cu NP and (b) Cu@G NP systems. In the background, it can be seen the stress-strain curve with the stress on a scale from 0 to 12 GPa.