Supplementary Materials Contrasting the excited state properties of different conformers of *trans*- and *cis*- 2, 2'-Bipyridine oligomers in the gas phase

Palak Mandal and Aditya N. Panda*

Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India

E-mail: anp@iitg.ac.in

List of Tables

S1	Energies (in eV) of ground state optimized structures of all the oligomers at	
	B3LYP-D3/def2-SVPD level	S7
S2	Calculated dihedral angles (ϕ_{1-7}) of $(\mathbf{BPY})_2$ - $(\mathbf{BPY})_4$ for <i>trans</i> - structures	
	of o - conformer at B3LYP-D3/def2-SVPD level	S7
S3	Calculated dihedral angles (ϕ_{1-7}) of $(\mathbf{BPY})_2$ - $(\mathbf{BPY})_4$ for trans - structures	
	of m - and p - conformers at B3LYP-D3/def2-SVPD level	$\mathbf{S8}$
S4	Calculated dihedral angles (ϕ_{1-7}) of $(\mathbf{BPY})_2$ - $(\mathbf{BPY})_4$ for <i>cis</i> - structures of	
	o- conformer at B3LYP-D3/def2-SVPD level	$\mathbf{S8}$
S5	Calculated dihedral angles (ϕ_{1-7}) of $(\mathbf{BPY})_2$ - $(\mathbf{BPY})_4$ for <i>cis</i> - structures of	
	$m\text{-}$ and $p\text{-}$ conformers at B3LYP-D3/def2-SVPD level $\hfill \ldots \ldots \ldots \ldots$	$\mathbf{S8}$
S6	Vertical excitation energies $(E_{\rm g})$, oscillator strengths $(f_{\rm osc})$ and the rotatory	
	strengths ($R \text{ in } 10^{-40} \text{ erg-esu-cm/Gauss}$) of first sixteen excited states for three	
	conformers of $trans$ - and cis -(BPY) ₂ obtained at RI-ADC(2)/def2-TZVPD	
	level	S9
S7	Vertical excitation energies $(E_{\rm g})$, oscillator strengths $(f_{\rm osc})$ and the rotatory	
	strengths (R in 10^{-40} erg-esu-cm/Gauss) of first sixteen excited states for three	
	conformers of $trans$ - and cis -(BPY) ₃ obtained at RI-ADC(2)/def2-TZVPD	
	level	S10
S8	Vertical excitation energies $(E_{\rm g})$, oscillator strengths $(f_{\rm osc})$ and the rotatory	
	strengths (R in 10^{-40} erg-esu-cm/Gauss) of first sixteen excited states for	
	cy- o - and cy- p - conformers of cis -(BPY) ₃ obtained at RI-ADC(2)/def2-	
	TZVPD level	S11
S9	$E_{\rm g},~f_{\rm osc},$ Rotatory Strengths (R in erg-esu-cm/Gauss), $ \mu $ (in esu-cm), $ m $	
	(in erg-G ⁻¹), cos θ , $g_{\rm CD}$, and $ m / \mu $ values of the first sixteen excited states	
	of $trans-(BPY)_4$ for three conformers obtained at RI-ADC(2)/def2-TZVPD	
	level	S12

- S10 $E_{\rm g}$, $f_{\rm osc}$, Rotatory Strengths (R in erg-esu-cm/Gauss), $|\mu|$ (in esu-cm), |m| (in erg-G⁻¹), cos θ , $g_{\rm CD}$, and $|m|/|\mu|$ values of the first sixteen excited states of **cis**-(**BPY**)₄ for three conformers obtained at RI-ADC(2)/def2-TZVPD level S13
- S11 Excitation energies (E_g) and oscillator strengths (f_{osc}) of three different conformers for *trans*-(**BPY**)₄ calculated at RI-ADC(2) level and using two different functionals B3LYP and CAM-B3LYP using the def2-TZVPD basis set S14
- S12 Excitation energies (E_g) and oscillator strengths (f_{osc}) for three different conformers of *cis***-(BPY**)₄ calculated at RI-ADC(2) level and using two different functionals B3LYP and CAM-B3LYP using the def2-TZVPD basis set S15

List of Figures

S1	Ground state optimized structures of $trans$ - and cis -(BPY) ₂ for o -, m -,	
	and p - conformers obtained at B3LYP-D3/def2-SVPD level	S6
S2	Optimized geometries of $trans$ - and cis - $(BPY)_3$ for o -, m -, and p - con-	
	formers. In this figure, (a) and (b) are the cyclic (cy) analogs of $\boldsymbol{o}\text{-}$ and $\boldsymbol{p}\text{-}$	
	conformers, respectively.	S6
S3	Absorption spectra of o -, m -, and p - conformers for $trans$ - and cis -(BPY) ₄	
	obtained at RI-ADC(2) level and using two different functionals B3LYP and	
	CAM-B3LYP using the def2-TZVPD basis set	S16
S4	Absorption spectra of cy- $\boldsymbol{o}\text{-}$ and cy- $\boldsymbol{p}\text{-}$ obtained at RI-ADC(2) level and using	
	two different functionals B3LYP and CAM-B3LYP using the def2-TZVPD	
	basis set	S17
S5	Natural transition orbitals corresponding to the S_1 states of three different	
	conformers of cis -(BPY) ₂ . Here, λ value represents the weight of a configu-	
	ration	S18
S6	e- h correlation plots corresponding to the first five excited states of cis -	
	$(\mathbf{BPY})_2$ for three different conformers	S19
S7	Natural transition orbitals corresponding to the S_1 states of three different	
	conformers of cis -(BPY) ₄ . Here, λ value represents the weight of a configu-	
	ration	S19
S8	e- h correlation plots corresponding to the first five excited states of cis -	
	$(\mathbf{BPY})_4$ for three different conformers	S20
S9	e-h correlation plots obtained using the RI-ADC(2) method, and B3LYP and	
	CAM-B3LYP functionals for the first five excited states of $\textit{o-trans-(BPY)}_4$	S23
S10	e-h correlation plots obtained using the RI-ADC(2) method, and B3LYP and	
	CAM-B3LYP functionals for the first five excited states of m -trans-(BPY) ₄	S23

- S11 *e-h* correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of p-trans-(BPY)₄ S24
- S12 *e-h* correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of $o-cis-(BPY)_4$. S24
- S13 *e-h* correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of $m-cis-(BPY)_4$. S24
- S14 *e-h* correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of $p-cis-(BPY)_4$. S25

Figure S1: Ground state optimized structures of *trans*- and *cis*- $(BPY)_2$ for *o*-, *m*-, and *p*- conformers obtained at B3LYP-D3/def2-SVPD level.

Figure S2: Optimized geometries of *trans*- and *cis*- $(BPY)_3$ for *o*-, *m*-, and *p*- conformers. In this figure, (a) and (b) are the cyclic (cy) analogs of *o*- and *p*- conformers, respectively.

trans	$(\mathbf{BPY})_2$	$(\mathbf{BPY})_3$	$(\mathbf{BPY})_4$
0-	0.00	0.00	0.00
m-	0.19	0.38	0.57
p-	0.17	0.33	0.50
cis			
0-	0.91	1.38	0.50
су- <i>о-</i>		33.91	
m-	0.88	1.28	1.77
р-	0.86	1.12	1.04
су- р-		33.67	

Table S1: Energies (in eV) of ground state optimized structures of all the oligomers at B3LYP-D3/def2-SVPD level

In the case of **trans** oligomers for **o**- conformer, only one type of the dihedral angle ϕ_i , defined as \angle N-C-C-C, is used. In **m**- and **p**-, two types of dihedral angles, ϕ_j and ϕ_k , are used which are defined as \angle N-C-C-C and \angle C-C-C-C, respectively. Similarly, in the case of **cis-o**- conformer, only one type of dihedral angle $\phi_i = \angle$ N-C-C-N is used, whereas for **m**- and **p**- two types of dihedral angles $\phi_j = \angle$ N-C-C-N and $\phi_k = \angle$ C-C-C-C are used. In the case of tetramers, for example, i=1-7, j=1, 3, 5, 7, and k=2, 4, 6.

Table S2: Calculated dihedral angles (ϕ_{1-7}) of $(BPY)_2$ - $(BPY)_4$ for *trans*- structures of *o*- conformer at B3LYP-D3/def2-SVPD level

Angle	$(\mathbf{BPY})_2$	$(\mathbf{BPY})_3$	$(\mathbf{BPY})_4$
ϕ_1	0	0	0
ϕ_2	0	0	0
ϕ_3	0	0	0
ϕ_4		0	0
ϕ_5		0	0
ϕ_6			0
ϕ_7			0

		m-			p-	
Angle	$(\mathbf{BPY})_2$	$(\mathbf{BPY})_3$	$(\mathbf{BPY})_4$	$(\mathbf{BPY})_2$	$(\mathbf{BPY})_3$	$(\mathbf{BPY})_4$
ϕ_1	0	0	0	-0.8	-0.8	0.6
ϕ_2	37.2	-37	37.1	33.7	33.6	-33.3
ϕ_3	0	0	0	-0.5	-1.6	1.6
ϕ_4		37	37.2		33.6	-33.5
ϕ_5		0	0		0.5	1.6
ϕ_6			37.1			-33.3
ϕ_7			0			0.8

Table S3: Calculated dihedral angles (ϕ_{1-7}) of $(BPY)_2$ - $(BPY)_4$ for *trans*- structures of *m*- and *p*- conformers at B3LYP-D3/def2-SVPD level

Table S4: Calculated dihedral angles (ϕ_{1-7}) of $(BPY)_2$ - $(BPY)_4$ for *cis*- structures of *o*- conformer at B3LYP-D3/def2-SVPD level

0-											
Angle	$(\mathbf{BPY})_2$	$(\mathbf{BPY})_3$	$cy-(BPY)_3$	$(\mathbf{BPY})_4$							
ϕ_1	39.6	-30.3	-26.5	38.7							
ϕ_2	-38.4	20.8	-26.5	-26.0							
ϕ_3	39.6	-44.6	51.7	53.3							
ϕ_4		20.8	-26.5	-38.6							
ϕ_5		-30.3	-26.5	53.3							
ϕ_6			51.7	-26.0							
ϕ_7				38.7							

Table S5: Calculated dihedral angles (ϕ_{1-7}) of $(BPY)_2$ - $(BPY)_4$ for *cis*- structures of *m*- and *p*- conformers at B3LYP-D3/def2-SVPD level

		<i>m</i> -		<i>p</i> -						
Angle	$(\mathbf{BPY})_2$	$(\mathbf{BPY})_3$	$(\mathbf{BPY})_4$	$(\mathbf{BPY})_2$	$(BPY)_3$	$cy-(BPY)_3$	$(\mathbf{BPY})_4$			
ϕ_1	35.2	35.3	35.2	-37.3	-40.0	-17.5	-42.5			
ϕ_2	-37.9	-37.7	-37.8	35.7	26.8	-23.9	29.0			
ϕ_3	35.2	33.2	33.0	-37.3	-42.2	41.6	-42			
ϕ_4		-37.8	-37.8		26.8	-23.9	22.3			
ϕ_5		35.3	33.1		-40.0	-17.5	-42.0			
ϕ_6			-37.8			39.0	29.0			
ϕ_7			35.2				-42.5			

Table S6: Vertical excitation energies (E_g) , oscillator strengths (f_{osc}) and the rotatory strengths (R in 10^{-40} erg-esu-cm/Gauss) of first sixteen excited states for three conformers of *trans*- and *cis*-(BPY)₂ obtained at RI-ADC(2)/def2-TZVPD level

trans			0-		<i>m</i> -				<i>p</i> -			
State	irrep	$E_{\rm g}$	$f_{\rm osc}$	R	irrep	$E_{\rm g}$	$f_{\rm osc}$	R	irrep	$E_{\rm g}$	$f_{\rm osc}$	R
S_1	А	4.37	0.000	0.00	В	4.19	1.487	-1.68	А	4.33	0.005	-6.41
S_2	В	4.37	0.000	0.00	А	4.20	0.002	-1.80	В	4.34	0.013	29.95
S_3	А	4.39	0.000	0.00	В	4.38	0.292	28.89	А	4.51	0.014	-11.13
S_4	В	4.46	0.460	0.00	А	4.62	0.000	1.84	В	4.55	0.298	102.66
S_5	А	4.48	0.004	0.00	А	4.64	0.001	2.40	А	4.64	0.000	2.56
S_6	В	4.70	0.000	0.00	В	4.73	0.036	-56.86	В	4.66	0.060	-160.54
S_7	В	4.78	0.696	0.00	В	4.75	0.010	-62.68	В	4.80	0.637	-235.95
S_8	В	4.79	0.000	0.00	А	4.82	0.001	-8.71	А	4.84	0.034	237.77
S_9	А	4.80	0.000	0.00	В	4.92	0.001	13.02	В	4.91	0.001	0.86
S_{10}	А	4.82	0.000	0.00	А	4.94	0.000	-2.53	А	4.91	0.000	-0.11
S_{11}	А	5.05	0.004	0.00	В	5.10	0.006	12.17	А	5.08	0.005	3.28
S_{12}	В	5.06	0.000	0.00	А	5.12	0.006	-10.70	В	5.08	0.000	-1.66
S_{13}	В	5.13	0.228	0.00	В	5.14	0.041	-21.79	В	5.30	0.113	-13.22
S_{14}	А	5.35	0.000	0.00	А	5.39	0.000	2.66	А	5.41	0.027	90.78
S_{15}	В	5.47	0.580	0.00	А	5.46	0.008	60.34	В	5.47	1.217	-127.51
S_{16}	А	5.74	0.000	0.00	В	5.91	0.070	-29.31	А	5.75	0.000	-1.82
cis												
S_1	А	4.38	0.000	0.55	В	4.28	0.301	-99.18	В	4.35	0.003	-7.50
S_2	В	4.44	0.001	-2.91	А	4.31	0.000	-4.22	А	4.36	0.005	37.99
S_3	А	4.47	0.000	0.67	В	4.48	0.781	-213.58	А	4.56	0.008	45.18
S_4	В	4.52	0.003	25.56	А	4.55	0.000	0.42	В	4.57	0.007	13.80
S_5	А	4.58	0.001	-14.94	В	4.59	0.383	310.76	В	4.68	0.065	22.93
S_6	В	4.59	0.010	-46.51	А	4.78	0.000	-2.55	А	4.75	0.134	-100.47
S_7	В	4.72	0.279	-68.46	В	4.79	0.076	108.99	В	4.77	0.001	-4.37
S_8	А	4.86	0.002	17.60	А	4.86	0.000	-4.24	А	4.77	0.012	-4.69
S_9	В	4.86	0.003	-6.70	А	4.90	0.000	0.01	В	4.91	0.003	0.00
S_{10}	А	4.89	0.121	89.00	В	4.90	0.005	17.34	А	4.91	0.001	8.11
S_{11}	В	5.07	0.015	-92.64	В	4.94	0.217	-84.32	В	5.06	0.202	132.95
S_{12}	А	5.10	0.118	23.02	А	5.06	0.015	-14.32	А	5.08	0.062	-46.53
S_{13}	В	5.31	0.095	9.21	В	5.10	0.022	23.01	В	5.42	0.101	35.92
S_{14}	А	5.58	0.476	215.72	А	5.52	0.002	11.30	В	5.52	0.944	-24.65
S_{15}	В	5.68	0.078	-19.81	А	5.68	0.003	5.81	А	5.59	0.457	-124.32
S_{16}	А	5.70	0.028	5.03	В	5.96	0.008	9.70	А	5.66	0.064	-29.72

Table S7: Vertical excitation energies (E_g) , oscillator strengths (f_{osc}) and the rotatory strengths (R in 10^{-40} erg-esu-cm/Gauss) of first sixteen excited states for three conformers of *trans*- and *cis*-(BPY)₃ obtained at RI-ADC(2)/def2-TZVPD level

trans			0-		<i>m</i> -				<i>p</i> -			
State		$E_{\rm g}$	$f_{\rm osc}$	R	irrep	$E_{\rm g}$	$f_{\rm osc}$	R	irrep	$E_{\rm g}$	$f_{\rm osc}$	R
S_1	Α	4.34	0.000	0.00	В	3.94	2.785	23.69	А	4.30	0.007	0.03
S_2	В	4.35	0.000	0.00	А	4.12	0.001	2.61	А	4.33	0.001	-10.91
S_3	Α	4.36	0.000	0.00	В	4.25	0.065	-12.97	В	4.33	0.019	34.58
S_4	В	4.37	0.001	0.00	А	4.30	0.001	3.20	В	4.47	0.137	87.82
S_5	А	4.37	0.000	0.00	А	4.49	0.002	-9.67	А	4.48	0.015	-43.96
S_6	В	4.42	0.000	0.00	В	4.55	0.009	-1.30	В	4.53	0.317	71.28
S_7	А	4.43	0.000	0.00	А	4.56	0.000	4.76	А	4.55	0.044	133.02
S_8	В	4.46	1.230	-0.01	В	4.63	0.039	-11.91	В	4.56	0.381	-217.32
S_9	А	4.50	0.007	0.00	А	4.69	0.001	-1.23	А	4.64	0.001	-4.82
S_{10}	В	4.65	0.000	0.00	А	4.71	0.000	4.50	В	4.64	0.120	-244.57
S_{11}	А	4.75	0.000	0.00	В	4.73	0.056	199.77	В	4.81	0.534	-494.18
S_{12}	В	4.75	0.000	0.00	В	4.78	0.100	-22.73	А	4.83	0.123	565.32
S_{13}	В	4.78	0.744	-0.02	В	4.89	0.007	-35.00	А	4.90	0.000	-0.65
S_{14}	А	4.79	0.000	0.00	А	4.92	0.000	3.59	А	4.91	0.000	0.51
S_{15}	В	4.83	0.000	0.00	В	4.93	0.001	3.66	В	4.91	0.000	0.97
S_{16}	А	4.84	0.000	0.00	А	5.05	0.002	4.08	В	5.07	0.001	-1.19
cis												
S_1	В	3.98	0.000	-1.77	В	4.17	1.960	-274.92	В	4.31	0.007	24.89
S_2	А	3.98	0.000	-0.76	А	4.18	0.001	-5.16	А	4.31	0.000	5.00
S_3	В	4.15	0.000	-0.41	А	4.30	0.000	1.27	А	4.34	0.001	8.13
S_4	А	4.16	0.000	2.10	В	4.33	0.235	-5.04	В	4.37	0.008	35.70
S_5	А	4.31	0.000	-0.10	В	4.43	0.365	184.29	В	4.55	0.001	-21.27
S_6	В	4.34	0.002	-2.24	А	4.54	0.002	5.25	А	4.56	0.012	65.44
S_7	В	4.38	0.000	4.91	В	4.55	0.044	121.95	В	4.58	0.019	82.03
S_8	А	4.38	0.000	-1.56	А	4.67	0.011	-4.77	А	4.63	0.025	-42.42
S_9	А	4.44	0.001	15.75	В	4.76	0.115	27.44	В	4.71	0.211	-139.30
S_{10}	В	4.44	0.002	31.47	А	4.77	0.000	-1.28	А	4.73	0.034	5.35
S_{11}	В	4.51	0.049	-514.84	В	4.78	0.074	136.53	В	4.76	0.000	0.03
S_{12}	А	4.60	0.328	345.84	А	4.81	0.006	-22.97	А	4.76	0.000	-1.80
S_{13}	В	4.67	0.004	-0.06	В	4.84	0.015	-24.76	А	4.77	0.049	8.71
S_{14}	А	4.68	0.004	15.53	В	4.89	0.066	-61.39	В	4.79	0.004	4.83
S_{15}	В	4.85	0.176	-93.22	А	4.90	0.000	0.04	В	4.89	0.002	-3.79
S_{16}	А	4.88	0.001	2.05	А	4.91	0.000	0.01	А	4.89	0.000	9.38

Table S8: Vertical excitation energies (E_g) , oscillator strengths (f_{osc}) and the rotatory strengths $(R \text{ in } 10^{-40} \text{ erg-esu-cm/Gauss})$ of first sixteen excited states for cy-*o*- and cy-*p*- conformers of *cis*-(BPY)₃ obtained at RI-ADC(2)/def2-TZVPD level

		C	y- o-		су- р-					
State	irrep	$E_{\rm g}$	$f_{\rm osc}$	R	irrep	$E_{\rm g}$	$f_{\rm osc}$	R		
S_1	А	4.05	0.000	0.00	В	4.08	0.000	0.10		
S_2	В	4.05	0.001	4.06	А	4.08	0.001	-0.37		
S_3	В	4.18	0.000	1.96	А	4.30	0.020	3.20		
S_4	А	4.18	0.000	0.56	В	4.33	0.026	-113.55		
S_5	А	4.39	0.001	23.68	В	4.33	0.010	-46.02		
S_6	В	4.40	0.000	7.25	А	4.34	0.012	90.82		
S_7	В	4.40	0.000	7.42	В	4.39	0.017	121.59		
S_8	А	4.40	0.000	0.00	А	4.44	0.161	-63.88		
S_9	В	4.49	0.001	-16.16	В	4.49	0.003	-1.49		
S_{10}	А	4.51	0.000	4.62	А	4.49	0.000	-4.52		
S_{11}	А	4.52	0.012	200.15	В	4.60	0.154	24.71		
S_{12}	А	4.54	0.000	0.00	А	4.67	0.061	-44.97		
S_{13}	В	4.55	0.014	31.24	В	4.69	0.013	12.29		
S_{14}	В	4.62	0.348	-452.78	А	4.69	0.004	6.79		
S_{15}	А	4.82	0.000	0.00	А	4.72	0.006	-1.60		
S_{16}	В	4.83	0.354	317.22	В	4.76	0.023	3.83		

Table S9: $E_{\rm g}$, $f_{\rm osc}$, Rotatory Strengths (R in erg·esu·cm/Gauss), $|\mu|$ (in esu-cm), |m| (in erg-G⁻¹), cos θ , $g_{\rm CD}$, and $|m|/|\mu|$ values of the first sixteen excited states of *trans*-(BPY)₄ for three conformers obtained at RI-ADC(2)/def2-TZVPD level

					0-				
State	irrep	$E_{\rm g}$	$f_{\rm osc}$	$R/10^{-40}$	$ \mu /10^{-20}$	$ m /10^{-20}$	$\cos \theta$	$g_{ m CD}$	$ m / \mu $
S_1	А	4.33	0.000	0.00	3.537	0.000	0.000	0.000	0.000
S_2	А	4.35	0.000	0.00	0.000	0.752	0.000	0.000	Inf
S_3	В	4.35	0.001	0.00	28.699	0.000	0.000	0.000	0.000
S_4	А	4.36	0.000	0.00	2.665	0.000	0.992	0.000	0.000
S_5	Α	4.38	0.000	0.00	0.000	2.578	0.000	0.000	Inf
S_6	А	4.39	0.000	0.00	14.058	0.000	0.000	0.000	0.000
S_7	В	4.41	0.013	0.00	87.001	0.000	0.000	0.000	0.000
S_8	В	4.46	2.060	0.00	1104.190	0.000	0.000	0.000	0.000
S_9	А	4.46	0.000	0.00	0.000	0.881	0.000	0.000	Inf
S_{10}	Α	4.51	0.009	-0.01	73.286	0.000	-0.763	0.000	0.000
S_{11}	Α	4.70	0.000	0.00	10.560	0.000	0.000	0.000	0.000
S_{12}	В	4.79	0.747	0.00	641.601	0.000	0.000	0.000	0.000
S_{13}	В	4.97	0.465	0.00	497.053	0.000	0.000	0.000	0.000
S_{14}	В	5.12	0.067	0.00	186.130	0.000	0.000	0.000	0.000
S_{15}	В	5.27	0.216	0.00	328.783	0.000	0.000	0.000	0.000
S_{16}	В	5.46	1.809	0.00	934.459	0.000	0.000	0.000	0.000
					<i>m</i> -				
S_1	В	3.82	3.796	-9.29	1619.100	0.038	-0.151	0.000	0.000
S_2	А	4.09	0.002	-1.47	34.167	0.043	-1.000	-0.005	0.001
S_3	В	4.17	0.032	-4.72	141.604	0.346	-0.096	-0.001	0.002
S_4	А	4.19	0.000	2.67	13.522	0.198	1.000	0.059	0.015
S_5	А	4.28	0.001	-4.97	18.814	0.264	-1.000	-0.056	0.014
S_6	В	4.33	0.110	13.53	258.454	0.295	0.178	0.001	0.001
S_7	А	4.50	0.000	-2.76	11.727	0.236	-1.000	-0.080	0.020
S_8	В	4.52	0.288	98.00	409.653	0.513	0.466	0.002	0.001
S_9	А	4.54	0.000	3.47	6.923	0.502	1.000	0.288	0.072
S_{10}	В	4.57	0.000	-0.14	1.240	0.372	-0.303	-0.334	0.300
S_{11}	А	4.64	0.000	4.94	14.121	0.350	1.000	0.099	0.025
S_{12}	В	4.64	0.007	11.30	60.993	0.237	0.781	0.012	0.004
S_{13}	А	4.71	0.001	-0.65	18.426	0.035	-1.000	-0.008	0.002
S_{14}	В	4.72	0.004	30.48	46.522	0.659	0.995	0.056	0.014
S_{15}	В	4.74	0.120	-252.97	258.214	1.039	-0.943	-0.015	0.004
S_{16}	Α	4.76	0.001	-4.68	16.917	0.277	-1.000	-0.065	0.016
					<i>p</i> -				
S_1	А	4.33	0.010	8.75	76.791	0.114	1.000	0.006	0.001
S_2	В	4.33	0.002	-8.61	34.083	0.340	-0.744	-0.030	0.010
S_3	Α	4.37	0.000	6.06	7.753	0.782	1.000	0.399	0.101
S_4	В	4.37	0.015	-26.28	95.222	0.367	-0.752	-0.012	0.004
S_5	Α	4.52	0.000	-6.77	8.720	0.777	-1.000	-0.354	0.089
S_6	В	4.52	0.152	-138.91	297.647	0.808	-0.578	-0.006	0.003
S_7	Α	4.54	0.032	49.94	136.574	0.366	1.000	0.011	0.003
S_8	В	4.56	0.282	-36.31	403.326	0.735	-0.122	-0.001	0.002
S_9	А	4.61	0.008	6.04	68.041	0.089	1.000	0.005	0.001
S_{10}	В	4.61	0.013	22.63	84.615	1.256	0.213	0.013	0.015
S_{11}	В	4.63	0.795	461.84	673.165	2.235	0.307	0.004	0.003
S_{12}	А	4.63	0.094	-305.63	231.629	1.320	-1.000	-0.023	0.006
S_{13}	В	4.68	0.152	286.69	292.923	1.710	0.572	0.013	0.006
S_{14}	А	4.69	0.029	-14.02	127.547	0.110	-1.000	-0.003	0.001
S_{15}	В	4.89	0.435	549.80	484.638	4.221	0.269	0.009	0.009
S_{16}	А	4.89	0.230	-628.03	352.488	1.782	-1.000	-0.020	0.005

Table S10: $E_{\rm g}$, $f_{\rm osc}$, Rotatory Strengths (R in erg·esu·cm/Gauss), $|\mu|$ (in esu-cm), |m| (in erg-G⁻¹), cos θ , $g_{\rm CD}$, and $|m|/|\mu|$ values of the first sixteen excited states of *cis*-(BPY)₄ for three conformers obtained at RI-ADC(2)/def2-TZVPD level

					0-				
State	irrep	$E_{\rm g}$	$f_{\rm osc}$	$R/10^{-40}$	$ \mu /10^{-20}$	$ m /10^{-20}$	$\cos \theta$	$g_{ m CD}$	$ m / \mu $
S_1	А	4.02	0.000	0.74	13.041	0.057	1.000	0.017	0.004
S_2	В	4.02	0.000	0.63	6.979	0.228	0.395	0.052	0.033
S_3	Α	4.24	0.001	-1.45	22.833	0.063	-1.000	-0.011	0.003
S_4	В	4.24	0.000	-4.69	16.672	0.327	-0.861	-0.068	0.020
S_5	А	4.34	0.000	4.41	17.004	0.260	1.000	0.061	0.015
S_6	В	4.35	0.003	9.36	39.451	0.478	0.496	0.024	0.012
S_7	А	4.38	0.000	0.75	14.946	0.050	1.000	0.013	0.003
S_8	А	4.40	0.001	2.95	19.019	0.155	1.000	0.033	0.008
$\tilde{S_9}$	В	4.40	0.002	-25.55	35.812	0.729	-0.979	-0.080	0.020
S_{10}	В	4.46	0.000	-10.39	16.733	0.643	-0.966	-0.148	0.038
S_{11}	А	4.48	0.002	-25.68	33.354	0.770	-1.000	-0.092	0.023
S_{12}^{11}	В	4.49	0.005	-5.41	53.307	0.250	-0.406	-0.008	0.005
S_{13}^{12}	А	4.56	0.102	-316.42	243.441	1.300	-1.000	-0.021	0.005
S_{14}	В	4.56	0.031	368.34	134.373	3.538	0.775	0.082	0.026
S_{15}	А	4.57	0.054	-187.12	175.980	1.063	-1.000	-0.024	0.006
S16	В	4.59	0.051	356.53	171.450	3.094	0.672	0.049	0.018
~10			0.000-		<i>m-</i>	0.00 -	0.01-	0.0.00	0.010
S_1	В	4.08	3.128	-324.94	1422.290	1.683	-0.136	-0.001	0.001
S_2	Ā	4.17	0.004	-13.595	51.910	0.262	-1.000	-0.020	0.005
S_2^2	В	4.18	0.128	-12.36	284.552	0.449	-0.097	-0.001	0.002
S_{4}	Ā	4 28	0.005	22.26	55 848	0.399	1 000	0.029	0.007
S_{π}	B	4 31	0.064	19.32	198 506	0.364	0.267	0.020	0.001
S_{c}^{5}	A	4 37	0.007	4 46	66 594	0.067	1 000	0.002	0.001
S_{7}	B	4 42	0.330	284 18	443 343	0.986	0.650	0.001	0.001
S	A	4 48	0.038	11 45	148 589	0.077	1 000	0.000	0.001
So So	R	4 54	0.000	38.60	70.826	0.746	0.731	0.002	0.001
59 S10	A	4.54	0.005	-18.68	66 878	0.140 0.279	-1 000	-0.017	0.011 0.004
S_{10} S_{11}	R	4.70	0.000	38.01	322 158	0.880	0.134	0.011	0.001
S10	Δ	4 75	0.100	2.79	43 385	0.064	1 000	0.002	0.000
S12	Δ	4.77	0.000	-0.81	2 366	0.344	-1 000	-0.569	0.001 0.145
S13	R	4.77	0.000	0.81	6.045	0.345	0.387	0.005	0.140
S14 S15	B	4.11	0.000 0.124	182.06	$262\ 170$	0.545	0.001	0.000	0.001
S15	Δ	4.70	0.124 0.011	-30.67	76 059	0.700	-1 000	-0.021	0.005
0	11	1.15	0.011	-50.01	n-	0.400	-1.000	0.021	0.000
S.	Δ	4.20	0.001	4 11	$\frac{P^{-}}{20.820}$	0.138	1.000	0.010	0.005
S ₁	B	4.20	0.001 0.004	91 91	49.720	0.150	1.000 0.532	0.013 0.034	0.005
S_2	B	4.20	0.004 0.002	0.40	34 800	0.002	0.002 0.487	0.004	0.010
53 5	Δ	4.50	0.002	18.05	94.035 97.545	0.024 0.655	1 000	0.001	0.001 0.024
54 S-	Λ	4.31	0.001	10.00 28.13	43 081	0.055	1.000	0.055	0.024 0.015
S_{2}	R	4.35	0.003 0.017	41.20	100 048	0.000	0.505	0.001 0.017	0.010
56 S.	B	4.00	0.017	10.42	52 628	0.608	0.505	0.017 0.027	0.008
57 S		4.57	0.005	15.42 17.06	00.000	0.098	1.000	0.021 0.125	0.013
С. С.	л Л	4.42 1 15	0.001	1/ 50	20.020 18.600	0.780	1 000	0.135	0.004
59 S	A P	4.40	0.001	-14.00 46.00	110.090	1 200	-1.000	0.107	0.042 0.019
S10	Б С	4.00	0.021 0.041	40.00	153.000	1.290	0.324	0.019	0.012
S11 S		4.00 1 65	0.041	100.01	212 104	1.200	1 000	0.000	0.000
S12	A R	4.00	0.173	-190.09	70 976	0.007	-1.000	0.003	0.002
S13		4.07	0.011	4.94	13.210	0.112	1 000	0.000	0.010
S14	A P	4.09 4 60	0.000	-9.07 33.00	41.100	0.227	-1.000	-0.022	0.000
S15		4.09 1.71	0.000	-55.20 _6.18	100.200 201601	0.710	-0.040	-0.007	0.005
10	\mathbf{n}	7.11	0.004	-0.10	001001±	0.202	-1.000	-0.040	0.001

0-									
	RI-ADC(2)			CAM-B3LYP			B3LYP		
State	Irrep	$E_{\rm g}$	$f_{\rm osc}$	Irrep	$E_{\rm g}$	$f_{\rm osc}$	Irrep	$E_{\rm g}$	$f_{\rm osc}$
S_1	А	4.33	0.000	А	4.43	0.000	А	3.89	0.000
S_2	в	4.35	0.001	в	4.43	0.064	в	3.89	0.001
S_3	Α	4.35	0.000	в	4.47	1.344	Α	3.96	0.000
S_4	Α	4.36	0.000	в	4.49	1.060	в	3.97	0.015
S_5	Α	4.38	0.000	Α	4.49	0.000	Α	4.07	0.000
S_6	Α	4.39	0.000	А	4.55	0.000	в	4.09	0.000
S ₇	в	4.41	0.013	в	4.59	0.000	Α	4.10	0.000
S ₈	в	4.46	2.060	А	4.59	0.002	в	4.11	1.741
S_9	Α	4.46	0.000	в	4.61	0.000	в	4.11	0.026
S_{10}	Α	4.51	0.009	Α	4.61	0.001	Α	4.12	0.000
S_{11}	Α	4.70	0.000	Α	4.63	0.007	в	4.13	0.000
S_{12}	в	4.79	0.747	в	4.65	0.000	Α	4.13	0.000
S_{13}	в	4.97	0.465	Α	4.71	0.000	Α	4.17	0.000
S_{14}	в	5.12	0.067	в	4.76	0.784	в	4.17	0.000
S_{15}	в	5.27	0.216	Α	4.82	0.000	А	4.23	0.006
S_{16}	в	5.46	1.809	в	4.84	0.000	Α	4.25	0.000
				m	ı-				
S_1	В	3.82	3.795	В	3.75	3.723	В	3.22	2.928
S_2	Α	4.09	0.002	А	4.16	0.000	А	3.65	0.000
S_3	в	4.17	0.032	А	4.38	0.003	А	3.69	0.000
S_4	Α	4.19	0.000	В	4.43	0.011	Α	3.75	0.001
S_5	Α	4.28	0.001	А	4.50	0.001	в	3.82	0.009
S_6	В	4.33	0.110	В	4.53	0.026	Α	3.94	0.000
S_7	Α	4.50	0.000	В	4.55	0.273	В	4.00	0.157
S_8	В	4.52	0.288	Α	4.70	0.000	В	4.01	0.527
S9	Α	4.54	0.000	Α	4.74	0.001	В	4.03	0.021
S_{10}	в	4.57	0.000	в	4.75	0.001	в	4.14	0.001
S11	Α	4.64	0.000	А	4.79	0.000	А	4.19	0.000
S_{12}^{11}	В	4.64	0.007	В	4.84	0.004	А	4.21	0.000
S13	Α	4.71	0.001	А	4.87	0.001	в	4.26	0.000
S14	В	4.72	0.004	В	4.88	0.014	В	4.33	0.001
S15	в	4.74	0.120	в	4.90	0.005	А	4.33	0.001
S16	Α	4.76	0.001	Α	4.91	0.000	Α	4.36	0.001
				p	-				
S_1	А	4.33	0.010	A	4.52	0.024	А	4.01	0.017
S ₂	в	4.33	0.002	в	4.52	0.239	в	4.02	0.005
\tilde{s}_{3}	B	4.37	0.015	B	4.53	0.166	B	4.04	0.036
S4	А	4.37	0.000	А	4.53	0.003	А	4.04	0.001
\tilde{S}_5	A	4.52	0.000	В	4.56	1.506	в	4.11	0.129
Se	в	4.52	0.152	А	4.63	0.161	А	4.11	0.014
~0 S7	Ā	4.54	0.032	A	4.64	0.121	A	4.12	0.026
S ₈	в	4.57	0.282	В	4.64	0.041	в	4.15	0.798
So	в	4.61	0.013	А	4.71	0.011	в	4.17	0.011
S10	Ā	4.61	0.008	В	4.73	0.012	Ā	4.20	0.048
S11	в	4.63	0.795	А	4.78	0.013	А	4.25	0.001
S12	Ā	4.63	0.094	В	4.80	0.065	В	4.28	0.042
S12	В	4.68	0.152	B	4.84	0.027	B	4.31	0.088
S14	A	4.69	0.029	A	4.84	0.009	A	4.31	0.030
S15	В	4.89	0.435	В	4.91	0.171	В	4.37	0.112
S16	A	4 89	0.230	A	4 91	0.099	A	4.38	0.000

Table S11: Excitation energies (E_g) and oscillator strengths (f_{osc}) of three different conformers for *trans*-(BPY)₄ calculated at RI-ADC(2) level and using two different functionals B3LYP and CAM-B3LYP using the def2-TZVPD basis set

0-										
	RI-ADC(2)			CAM-B3LYP			B3LYP			
State	Irrep	$E_{\rm g}$	$f_{\rm osc}$	Irrep	$E_{\rm g}$	$f_{\rm osc}$	Irrep	$E_{\rm g}$	$f_{\rm osc}$	
S_1	В	4.02	0.000	В	4.36	0.000	В	3.90	0.000	
S_2	Α	4.02	0.000	Α	4.36	0.001	Α	3.91	0.000	
S_3	в	4.24	0.000	Α	4.56	0.000	Α	4.09	0.001	
S_4	А	4.25	0.001	в	4.57	0.001	в	4.09	0.000	
S_5	Α	4.34	0.000	в	4.61	0.005	в	4.16	0.036	
S_6	в	4.35	0.003	Α	4.62	0.000	Α	4.17	0.003	
S_7	Α	4.38	0.000	Α	4.62	0.001	Α	4.18	0.006	
S_8	в	4.40	0.002	в	4.65	0.013	в	4.18	0.009	
S_9	Α	4.40	0.001	Α	4.66	0.020	Α	4.19	0.017	
S_{10}	в	4.46	0.000	в	4.67	0.002	в	4.20	0.017	
S_{11}	Α	4.48	0.002	В	4.70	0.065	В	4.23	0.028	
S_{12}	в	4.49	0.005	Α	4.71	0.172	Α	4.27	0.002	
S_{13}	Α	4.56	0.102	Α	4.78	0.003	Α	4.27	0.001	
S_{14}	в	4.56	0.031	в	4.78	0.013	в	4.29	0.004	
S_{15}	Α	4.57	0.054	Α	4.88	0.026	Α	4.29	0.000	
S_{16}	В	4.59	0.051	В	4.89	0.011	В	4.34	0.025	
				m	ı-					
S_1	В	4.08	3.128	В	4.03	3.497	В	3.50	2.670	
S_2	А	4.17	0.004	Α	4.37	0.050	Α	3.80	0.015	
S_3	в	4.18	0.128	в	4.46	0.022	в	3.87	0.015	
S_4	Α	4.28	0.005	Α	4.47	0.005	Α	3.91	0.023	
S_5	в	4.31	0.064	в	4.55	0.002	Α	3.99	0.000	
S_6	A	4.37	0.007	A	4.57	0.007	в	3.99	0.000	
S_7	В	4.42	0.330	A	4.66	0.003	A	4.01	0.007	
S_8	А	4.48	0.038	В	4.67	0.077	Α	4.09	0.002	
S_9	в	4.54	0.009	в	4.72	0.010	В	4.11	0.005	
S_{10}	A	4.56	0.008	A	4.73	0.001	В	4.19	0.094	
S_{11}	в	4.70	0.185	в	4.79	0.200	A	4.20	0.000	
S_{12}	A	4.75	0.003	A	4.91	0.004	В	4.23	0.546	
S_{13}	В	4.77	0.000	В	4.94	0.008	В	4.28	0.009	
S_{14}	A	4.77	0.000	A	4.96	0.000	в	4.37	0.005	
S_{15}	в	4.77	0.124	в	4.96	0.008	A	4.48	0.005	
S_{16}	Α	4.80	0.011	Α	4.98	0.006	В	4.48	0.028	
				p	-					
S_1	В	4.20	0.004	A	4.56	0.002	A	3.92	0.001	
S_2	A	4.20	0.001	B	4.57	0.004	В	3.94	0.012	
S_3	в	4.30	0.002	в	4.59	0.003	в	4.00	0.000	
S_4	A	4.31	0.001	A	4.60	0.000	A	4.03	0.001	
S_5	A	4.35	0.003	A	4.62	0.003	в	4.04	0.006	
S_6	В	4.35	0.017	В	4.63	0.009	A	4.08	0.002	
S7	В	4.37	0.005	В	4.64	0.024	В	4.08	0.002	
58	A	4.42	0.001	A	4.66	0.007	в	4.13	0.013	
S9	A	4.45	0.001	A	4.69	0.001	A	4.13	0.003	
S_{10}	В	4.50	0.021	В	4.72	0.003	в	4.15	0.006	
S ₁₁	в	4.55	0.041	в	4.78	0.085	A	4.15	0.001	
S_{12}	A	4.65	0.173	A	4.86	0.264	A	4.17	0.001	
S ₁₃	в	4.67	0.011	в	4.92	0.041	В	4.25	0.005	
S14	A	4.69	0.003	A	4.97	0.029	в	4.29	0.002	
S ₁₅	в	4.70	0.033	в	5.01	0.004	A	4.32	0.103	
S16	А	471	0.002	А	5.01	0.008	А	4 34	0 000	

Table S12: Excitation energies (E_g) and oscillator strengths (f_{osc}) for three different conformers of cis-(BPY)₄ calculated at RI-ADC(2) level and using two different functionals B3LYP and CAM-B3LYP using the def2-TZVPD basis set

Figure S3: Absorption spectra of o-, m-, and p- conformers for trans- and cis-(BPY)₄ obtained at RI-ADC(2) level and using two different functionals B3LYP and CAM-B3LYP using the def2-TZVPD basis set

Figure S4: Absorption spectra of cy-o- and cy-p- obtained at RI-ADC(2) level and using two different functionals B3LYP and CAM-B3LYP using the def2-TZVPD basis set

Figure S5: Natural transition orbitals corresponding to the S_1 states of three different conformers of cis-(BPY)₂. Here, λ value represents the weight of a configuration.

Figure S6: e-h correlation plots corresponding to the first five excited states of cis- $(BPY)_2$ for three different conformers.

Figure S7: Natural transition orbitals corresponding to the S_1 states of three different conformers of *cis*-(**BPY**)₄. Here, λ value represents the weight of a configuration.

Figure S8: *e-h* correlation plots corresponding to the first five excited states of cis-(BPY)₄ for three different conformers.

Table S13: Excitation energies (E_g) , oscillator strengths (f_{osc}) , and ω_{CT} values of first five states of three different conformers of *trans*-(BPY)₄ calculated at RI-ADC(2) level and using two different functionals B3LYP and CAM-B3LYP using the def2-TZVPD basis set

0-										
	$\operatorname{RI-ADC}(2)$			CAM-B3LYP			B3LYP			
State	$E_{\rm g}$	$f_{\rm osc}$	ω_{CT}	$E_{\rm g}$	$f_{\rm osc}$	ω_{CT}	$E_{\rm g}$	$f_{\rm osc}$	ω_{CT}	
S_1	4.33	0.000	0.33	4.43	0.000	0.25	3.89	0.000	0.60	
S_2	4.35	0.001	0.44	4.43	0.064	0.35	3.89	0.001	0.58	
S_3	4.35	0.000	0.41	4.47	1.344	0.25	3.96	0.000	0.56	
S_4	4.36	0.000	0.33	4.49	1.060	0.27	3.97	0.015	0.55	
S_5	4.38	0.000	0.42	4.49	0.000	0.33	4.07	0.000	0.53	
				n	<i>n</i> -					
S_1	3.82	3.795	0.44	3.75	3.723	0.38	3.22	2.928	0.60	
S_2	4.09	0.002	0.30	4.16	0.000	0.34	3.65	0.000	0.69	
S_3	4.17	0.032	0.27	4.38	0.003	0.17	3.69	0.000	0.76	
S_4	4.19	0.000	0.38	4.43	0.011	0.14	3.75	0.001	0.38	
S_5	4.28	0.001	0.29	4.50	0.001	0.10	3.82	0.009	0.36	
<i>p</i> -										
S_1	4.33	0.010	0.19	4.52	0.024	0.11	4.01	0.017	0.25	
S_2	4.33	0.002	0.19	4.52	0.239	0.10	4.02	0.005	0.24	
S_3	4.37	0.015	0.19	4.53	0.166	0.09	4.04	0.036	0.20	
S_4	4.37	0.000	0.18	4.53	0.003	0.08	4.04	0.001	0.19	
S_5	4.52	0.000	0.47	4.56	1.506	0.12	4.11	0.129	0.51	

Table S14: Excitation energies (E_g) , oscillator strengths (f_{osc}) , and ω_{CT} values of first five states of three different conformers of cis-(BPY)₄ calculated at RI-ADC(2) level and using two different functionals B3LYP and CAM-B3LYP using the def2-TZVPD basis set

0-										
	RI-ADC(2)			CAM-B3LYP			B3LYP			
State	$E_{\rm g}$	$f_{\rm osc}$	$\omega_{ m CT}$	$E_{\rm g}$	$f_{\rm osc}$	ω_{CT}	Eg	$f_{\rm osc}$	$\omega_{ m CT}$	
S_1	4.02	0.000	0.52	4.36	0.000	0.30	3.90	0.000	0.42	
S_2	4.02	0.000	0.53	4.36	0.001	0.30	3.91	0.000	0.42	
S_3	4.24	0.000	0.36	4.56	0.000	0.10	4.09	0.001	0.17	
S_4	4.25	0.001	0.33	4.57	0.001	0.10	4.09	0.000	0.15	
S_5	4.34	0.000	0.51	4.61	0.005	0.19	4.16	0.036	0.49	
<i>m</i> -										
S_1	4.08	3.128	0.46	4.03	3.497	0.38	3.50	2.670	0.57	
S_2	4.17	0.004	0.33	4.37	0.050	0.30	3.80	0.015	0.48	
S_3	4.18	0.128	0.34	4.46	0.022	0.16	3.87	0.015	0.32	
S_4	4.28	0.005	0.34	4.47	0.005	0.17	3.91	0.023	0.46	
S_5	4.31	0.064	0.32	4.55	0.002	0.11	3.99	0.000	0.77	
S_1	4.20	0.004	0.42	4.56	0.002	0.18	3.92	0.001	0.72	
S_2	4.20	0.001	0.40	4.57	0.004	0.18	3.94	0.012	0.88	
S_3	4.30	0.002	0.36	4.59	0.003	0.17	4.00	0.000	0.43	
S_4	4.31	0.001	0.32	4.60	0.000	0.20	4.03	0.001	0.36	
S_5	4.35	0.003	0.42	4.62	0.003	0.28	4.04	0.006	0.41	

Figure S9: e-h correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of o-trans-(BPY)₄

Figure S10: e-h correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of m-trans-(BPY)₄

Figure S11: e-h correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of p-trans-(BPY)₄

Figure S12: e-h correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of o-cis-(BPY)₄

Figure S13: e-h correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of m-cis-(BPY)₄

Figure S14: e-h correlation plots obtained using the RI-ADC(2) method, and B3LYP and CAM-B3LYP functionals for the first five excited states of p-cis-(BPY)₄