Supporting Information for

Emergent ultrasmall multiferroics in paraelectric perovskite oxide by hole

polarons

Tao Xu*, Masataka Mori, Hiroyuki Hirakata, Takayuki Kitamura, Takahiro Shimada*

Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan

*Corresponding authors: <u>xu.tao.44a@st.kyoto-u.ac.jp</u>; <u>shimada@me.kyoto-u.ac.jp</u>

Fig. S1. (a)Crystal structure of orthorhombic CaTiO₃. The red dot box indicates the primitive cell. (b-1)(b-2)AFD displacement exist in this structure. The arrows indicate AFD displacement around each axis.

Fig. S2. (a)Schematic diagram of perovskite ABO₃, which has uniaxial AFD displacement. Blue arrows indicate the displacement of O atoms due to AFD displacement. (b)Schematic diagram of ABO₃ with hole polaron(yellow area). The red arrows indicate the displacement of A1 and O atoms due to the localization of hole. The pink and blue arrows indicate the direction of polarization and the displacement of O atom due to AFD displacement, respectively.

Fig. S3. The evolution of the squared wave function of the hole polaron in CaTiO₃ along the migration pathway. The yellow area represents the iso-surface of charge densities of 0.02 Å⁻³. White arrows indicate the small displacement of atoms around the hole polaron.

Fig. S4. (a)O2 atoms in primitive cell (black dot box) of orthorhombic $CaTiO_3$. (b)The direction of polarization (white arrows) and magnetic moment (red arrows) in the case of the hole polaron at each O2 atom.

	HSE06	Exp
$E_{\rm gap}({\rm eV})$	3.86	$3.8 \sim 4.4$
a (Å)	5.36	5.38
<i>b</i> (Å)	5.43	5.44
<i>c</i> (Å)	7.61	7.64

Table S1. Band gap E_{gap} , lattice parameters *a*, *b*, and *c* of orthorhombic CaTiO₃ calculated using HSE06. The experimental values [1,2] are also shown for comparison.

Table S2. Activation energy *Ea* and the hole polaron mobility μ for polaronic migration in CaTiO₃ from initial to the final structure.

Number of O2	O2-b,d	O2-c,e		
$E_{\rm a}({\rm meV})$	148.0	167.0		
$\mu(\times 10^{-3})(cm^2/Vs)$	2.52	1.19		
Number of O1	O1-a	O1-b	O1-c	O1-d
$E_{\rm a}({\rm meV})$	151.6	250.8	265.5	136.9
$\mu(\times 10^{-3})(cm^2/Vs)$	2.19	4.73×10 ⁻²	2.69×10 ⁻²	3.79

Reference

[1] A. R. Chakhmouradian, R. H. Mitchell, J. Solid State Chem., 1998, 138, 272277.
[2] A. Krause, W. M. Weber, D. Pohl, B. Rellinghaus, A. Kersch, T. Mikolajick, J. Phys. D: Appl. Phys., 2015, 48, 415304.