Electronic supplementary information

Theoretical insights into surface-phase transition and ion competition

during alkali ion intercalation on the Cu₄Se₄ nanosheet

Yang-Xin Yu *

Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China *Email: yangxyu@mail.tsinghua.edu.cn

Table S1	
Table S2	
Table S3	
Figure S1	
Figure S2	
Figure S3	
Figure S4	
Figure S5	S6
Figure S6	
Figure S7	
Figure S8	
Figure S9	
Figure S10	
Figure S11	
Figure S12	
Figure S13	
Figure S14	
Figure S15	
Figure S16	
Figure S17	
Figure S18	
Figure S19	
Figure S20	
Figure S21	
Figure S22	
Figure S23	
Figure S24	
Figure S25	
Figure S26	

Table S1 presents the structural parameter of monolayer, bilayer, trilayer, four-layer and bulk CuSe crystal. The vibrational frequencies of the Cu₄Se₄ nanosheet is given in Table S2. The geometric structures and cohesive energies of monolayer, bilayer, trilayer and four-layer CuSe nanosheet are plotted in Figures S1-S4, respectively.

All possible configurations of two, four, six, eight, ten, twelve, fourteen, sixteen sodium atoms adsorbed on the Cu₄Se₄ nanosheet are shown in Figures S5-S12, respectively, and those for potassium atoms are given in Figures S13-S20.

Figures S21-S25 are the geometric structures and adsorption energy of protons on the Cu₄Se₄ nanosheet with different intercalated proton number, where the adsorption energy of protons, $E_{\rm H}$, is defined as

$$E_{\rm H} = \left(E_{\rm H_n(Cu_4Se_4)_9} - E_{\rm (Cu_4Se_4)_9} - nE_{\rm H_2} / 2 \right) / n$$
(S1)

where $E_{H_n(Cu_4Se_4)_9}$, $E_{(Cu_4Se_4)_9}$, and E_{H_2} are energies of the proton intercalated system, Cu₄Se₄ nanosheet and a hydrogen molecule in the gas phase.

Materials	<i>a</i> , <i>c</i> (Å)	lse1-Cu1(Å)	lse2-Cu2(Å)	$l_{\text{Se1-Cu2}}(\text{\AA})$	lse2-se2(Å)	$E_{\rm coh}$
						(eV/atom)
Monolayer						
CuSe-a	3.756, 30.0	2.308				-2.948
CuSe-b	3.977, 30.0	2.295/2.303				-2.945
Bilayer						
Cu ₂ Se ₂ -a	4.059, 30.0		2.345		2.651	-3.144
Cu ₂ Se ₂ -b	3.690, 30.0	2.375	2.404	2.542		-3.248
Trilayer						
Cu ₃ Se ₃ -a	4.005, 30.0	2.315/2.363	2.435	2.429	2.507	-3.312
Cu ₃ Se ₃ -b	3.889, 30.0	2.360	2.364/2.376	2.455/2.485		-3.217
Tetralayer						
Cu ₄ Se ₄ -a	3.912, 30.0	2.346	2.412	2.453	2.425	-3.387
Cu ₄ Se ₄ -b	3.928, 30.0	2.433	2.271/2.379	2.332	2.542	-3.331
			2.386	2.456		
Bulk cystal						
CuSe(c)	3.994, 17.215	2.306	2.394	2.445	2.426	-3.442
CuSe(c,exp)	3.938, 17.250	2.274	2.391	2.451	2.386	

Table S1 Crystal lattice constants (*a*, *c*), bond lengths ($l_{Ch1-Cu1}$, $l_{Ch2-Cu2}$, $l_{Ch1-Cu2}$, and $l_{Ch2-Ch2}$) and cohesive energies (E_{coh}) of CuSe bulk crystals and nano-layers

Table S2 Vibrational modes and frequencies of the Cu₄Se₄ nanosheet.

mode	Au_amu	cm ⁻¹	meV	THz
1	0.005516	28.4	3.52	0.850
2	0.005588	28.7	3.56	0.861
3	0.012463	64.1	7.94	1.921
4	0.014540	74.7	9.27	2.241
5	0.015304	78.7	9.75	2.358
6	0.015718	80.8	10.02	2.422
7	0.015856	81.5	10.11	2.444
8	0.021733	111.7	13.85	3.349
9	0.024770	127.3	15.79	3.817
10	0.028402	146.0	18.10	4.377
11	0.035131	180.6	22.39	5.414
12	0.035147	180.7	22.40	5.417
13	0.040520	208.3	25.83	6.245
14	0.041926	215.5	26.72	6.461
15	0.042104	216.4	26.83	6.489
16	0.042763	219.8	27.26	6.590
17	0.042844	220.2	27.31	6.603
18	0.043175	221.9	27.52	6.654
19	0.046571	239.4	29.68	7.177
20	0.051162	263.0	32.61	7.884
21	0.051443	264.4	32.79	7.928

Crystal	Space group	<i>a /</i> Å	<i>b</i> / Å	<i>c</i> / Å	
Cu ₄ Se ₄	P6 ₃ /mmc	3.898	3.898	24.151	
NaCu ₄ Se ₄	P6 ₃ /mmc	4.029	4.029	24.819	
KCu ₄ Se ₄	P6 ₃ /mmc	4.042	4.042	26.639	

Table S3 Calculted lattice parameters for pristine and Na/K intercalted Cu₄Se₄ crystals

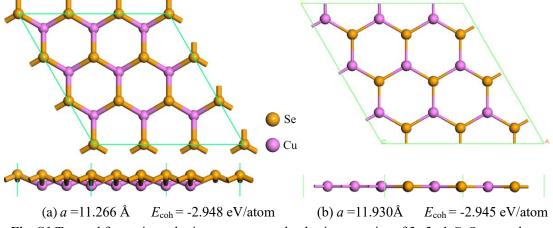
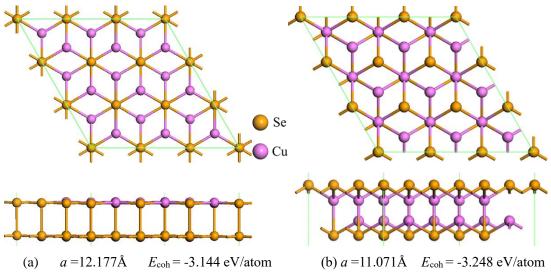
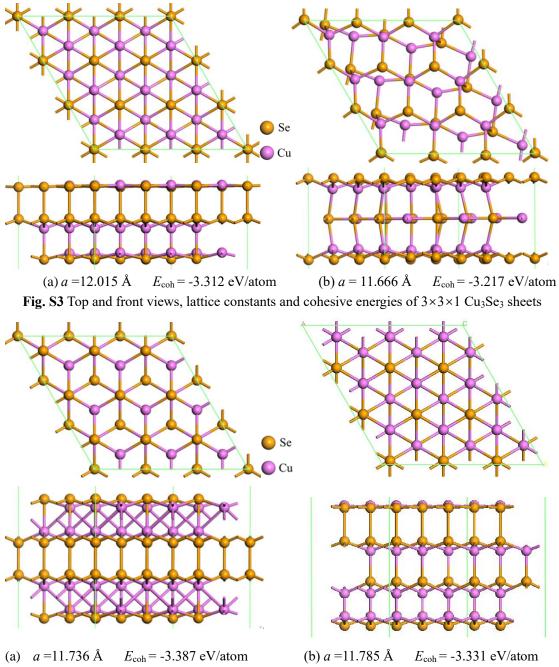
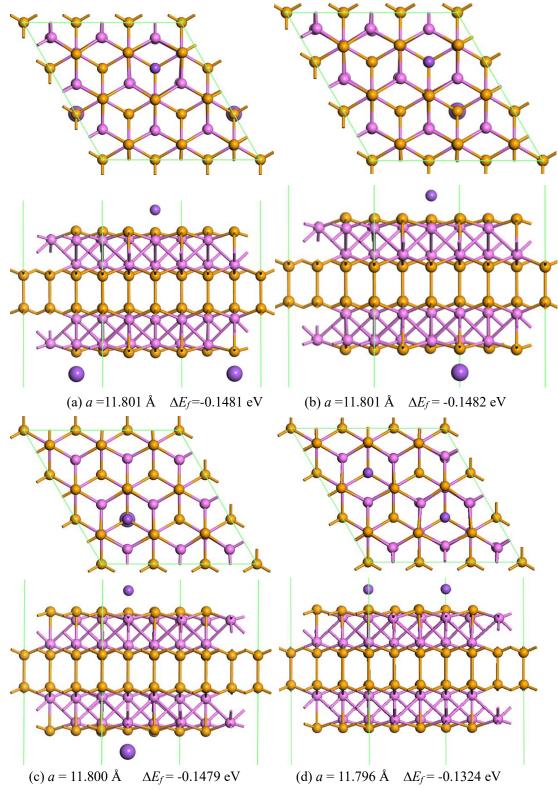
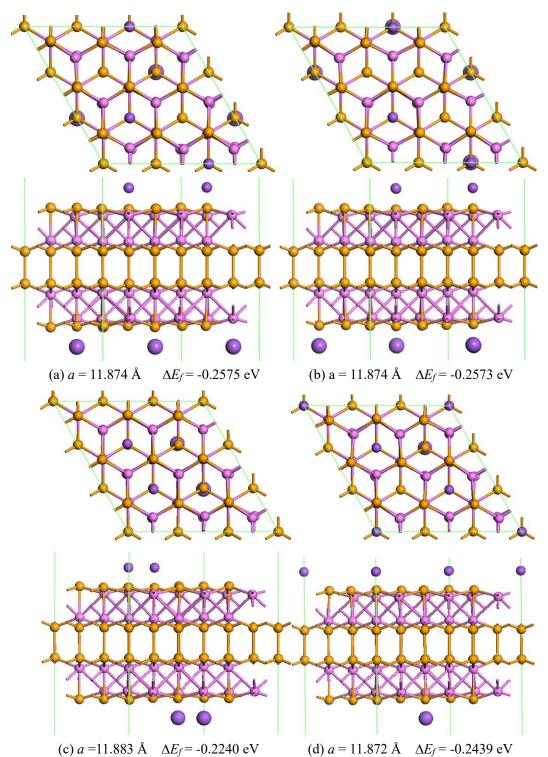
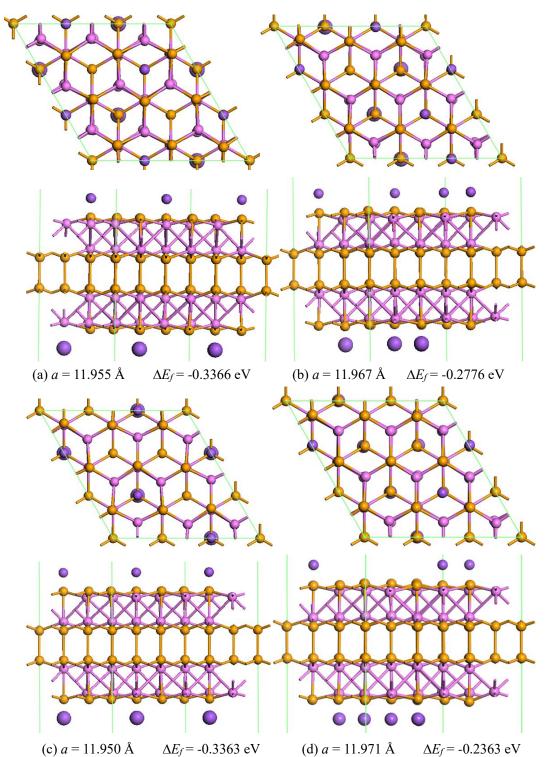




Fig. S1 Top and front views, lattice constants and cohesive energies of 3×3×1 CuSe monolayers

(a) a = 12.17/A $E_{\text{coh}} = -3.144 \text{ eV/atom}$ (b) a = 11.071A $E_{\text{coh}} = -3.248 \text{ eV/atom}$ Fig. S2 Top and front views, lattice constants and cohesive energies of $3 \times 3 \times 1$ Cu₂Se₂ sheets

Fig. S4 Top and front views, lattice constants and cohesive energies of $3 \times 3 \times 1$ Cu₄Se₄ sheets

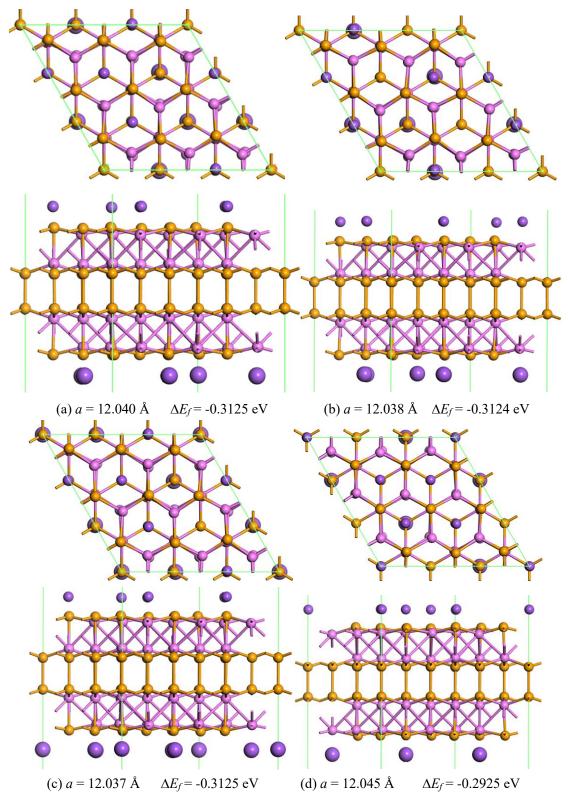

Fig. S5 Top and front views of two sodium atoms adsorbed on the 3×3×1 Cu₄Se₄ supercell.

Fig. S6 Top and front views of four sodium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S5.

Fig. S7 Top and front views of six sodium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S5.

Fig. S8 Top and front views of eight sodium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S5.

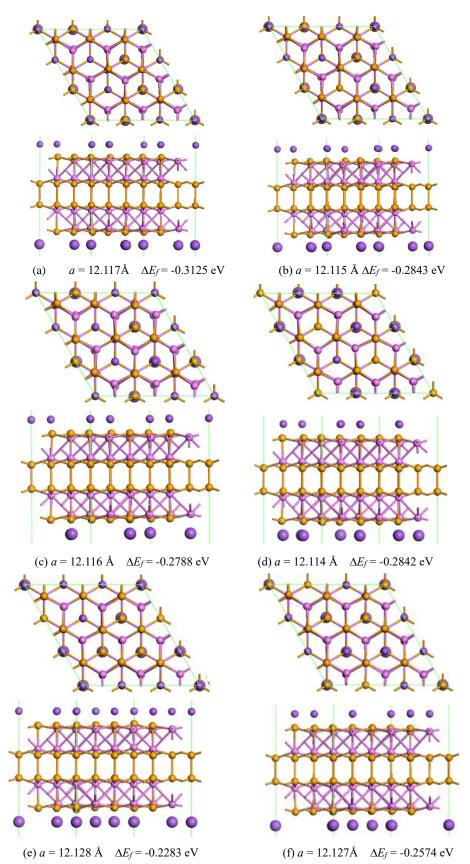
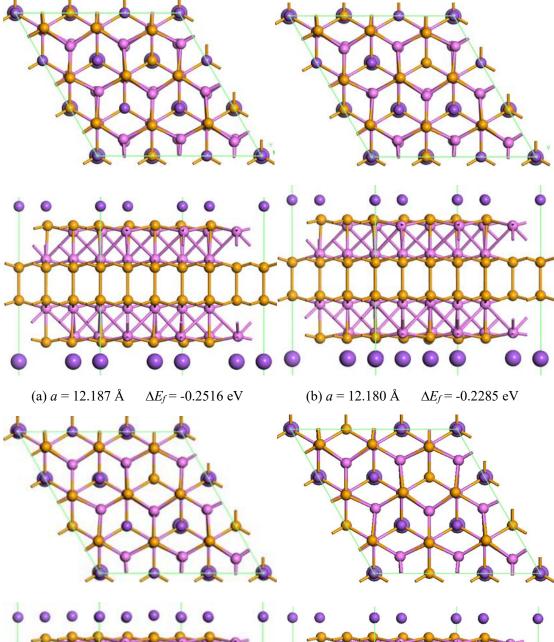
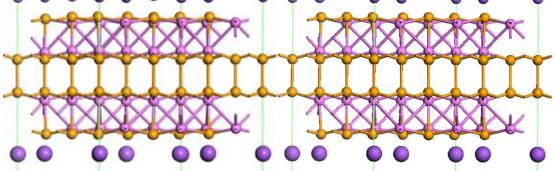
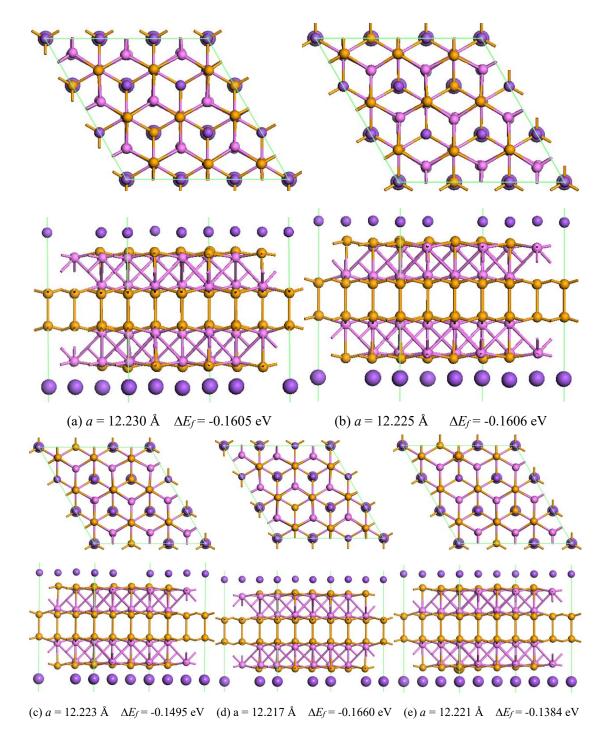
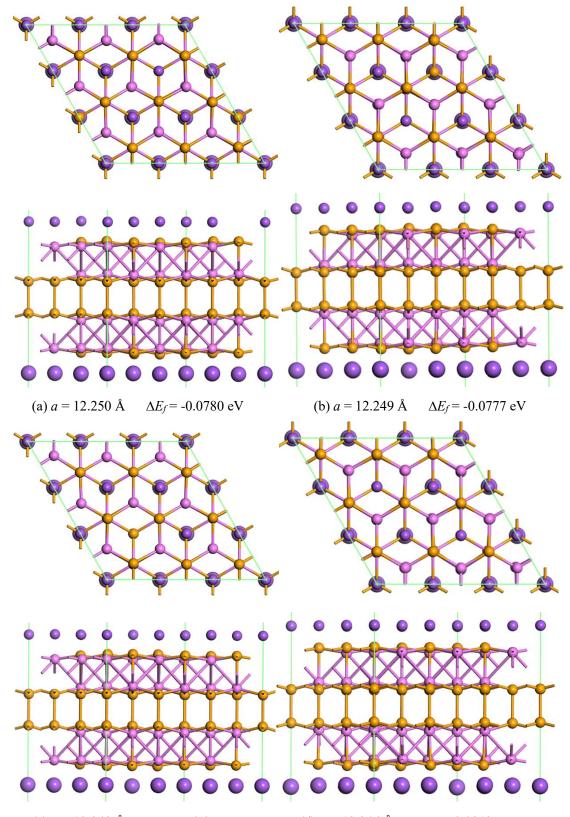





Fig. S9 Top and front views of ten sodium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S5.



(c) a = 12.166Å $\Delta E_f = -0.2199$ eV (d) a = 12.181 Å $\Delta E_f = -0.2514$ eV **Fig. S10** Top and front views of twelve sodium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S5.

Fig. S11 Top and front views of fourteen sodium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S5.

(c) a = 12.248 Å $\Delta E_f = -0.0775$ eV (d) a = 12.246 Å $\Delta E_f = -0.0813$ eV **Fig. S12** Top and front views of sixteen sodium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S5.

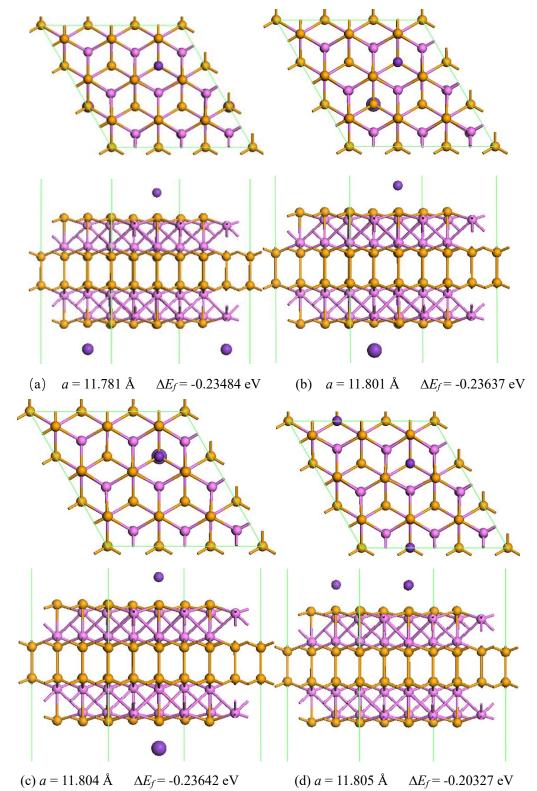
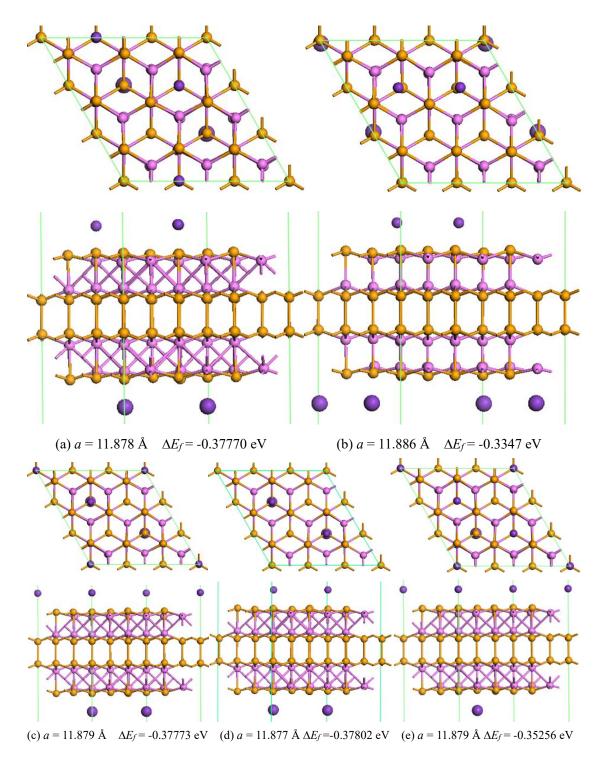
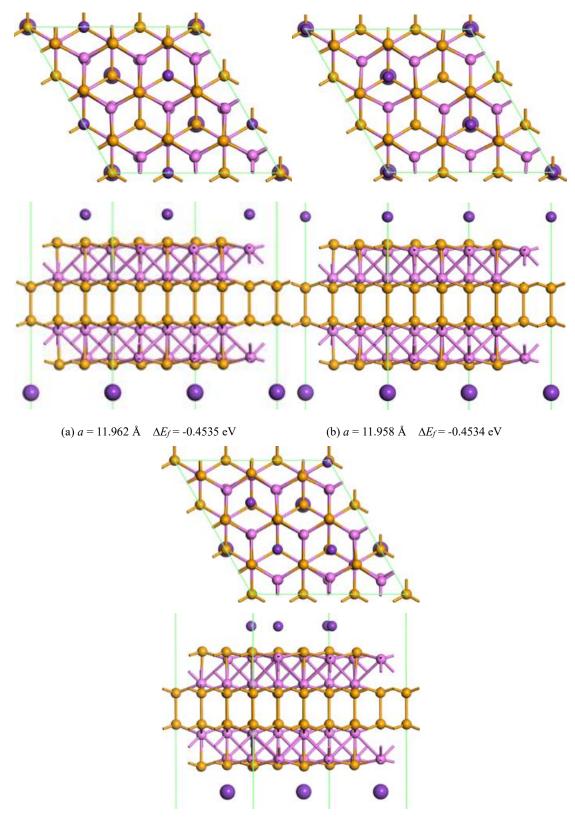




Fig. S13 Top and front views of two potassium atoms adsorbed on the 3×3×1 Cu₄Se₄ supercell.

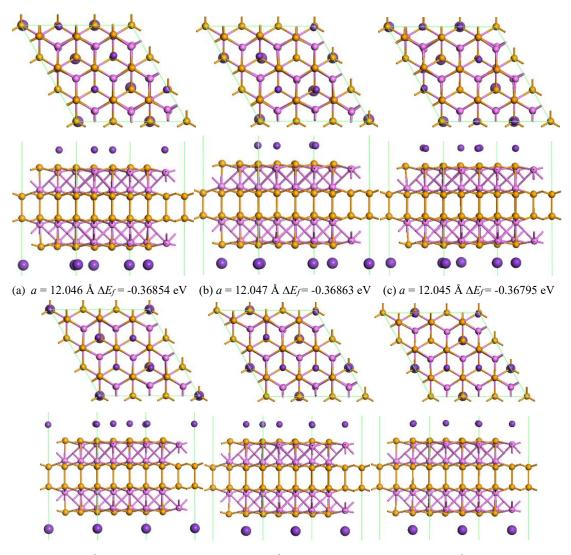
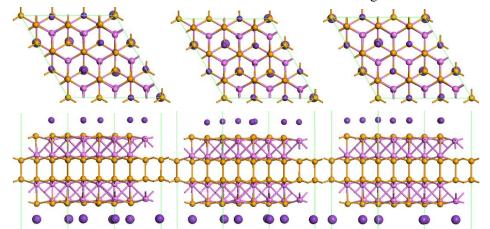
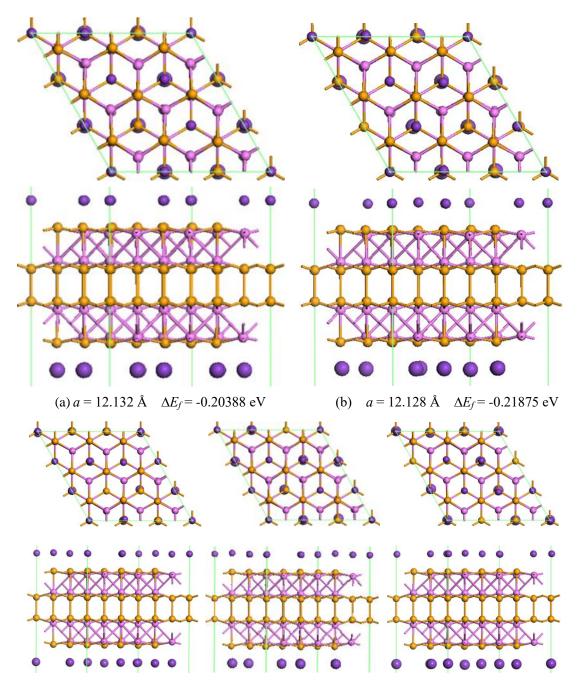


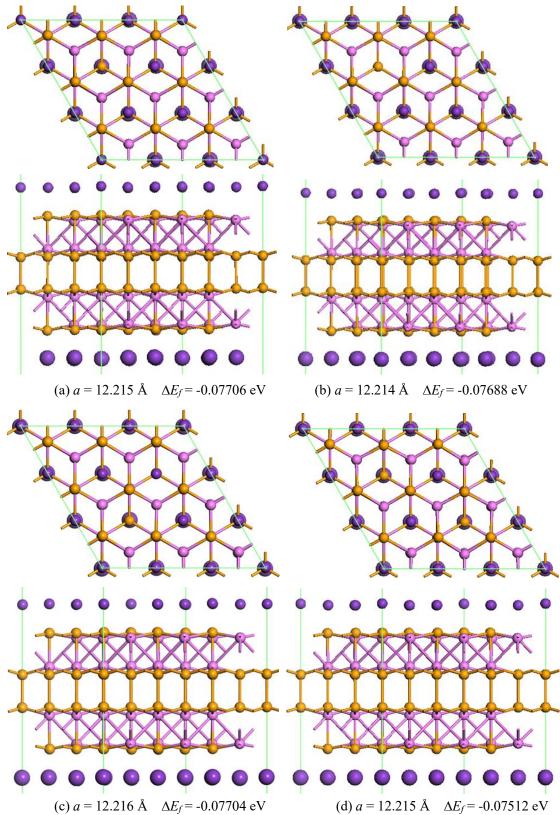
Fig. S14 Top and front views of four potassium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S13.

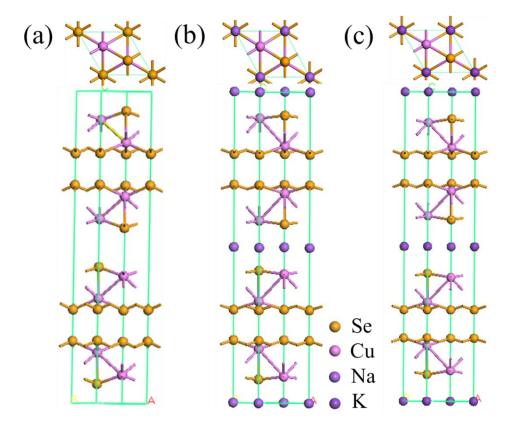


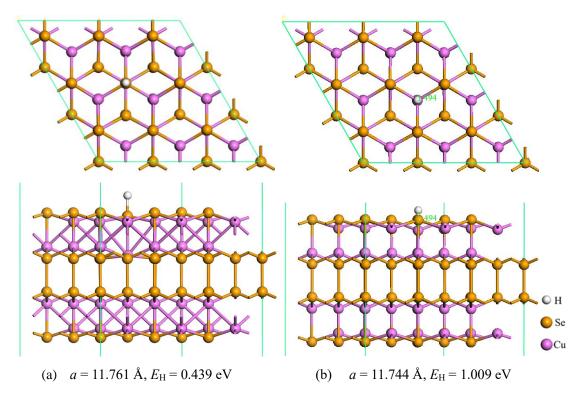
(c) $a = 11.969 \text{ Å} \quad \Delta E_f = -0.3735 \text{ eV}$

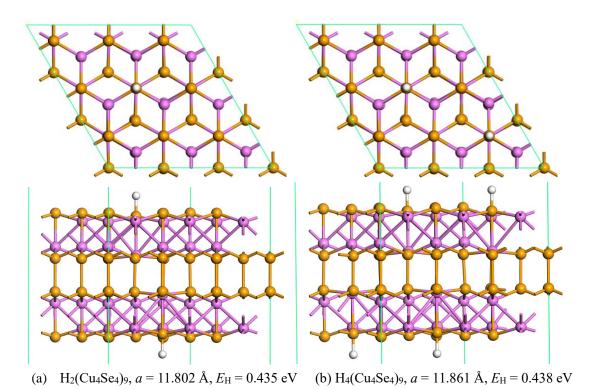

Fig. S15 Top and front views of six potassium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S13.

(d) a = 12.028 Å $\Delta E_f = -0.36685$ eV (e) a = 12.030 Å $\Delta E_f = -0.36704$ eV (f) a = 12.030 Å $\Delta E_f = -0.35623$ eV **Fig. S16** Top and front views of eight potassium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S13.


(a) a = 12.095 Å $\Delta E_f = -0.28456$ eV (b) a = 12.089 Å $\Delta E_f = -0.28642$ eV (c) a = 12.085 Å $\Delta E_f = -0.29383$ eV **Fig. S17** Top and front views of ten potassium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S13.


(c) a = 12.128 Å $\Delta E_f = -0.21896$ eV (d) a = 12.136 Å $\Delta E_f = -0.2175$ eV (e) a = 12.129 Å $\Delta E_f = -0.21902$ eV **Fig. S18** Top and front views of twelve potassium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S13.


Fig. S19 Top and front views of fourteen potassium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S13.


Fig. S20 Top and front views of sixteen potassium atoms adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S13.

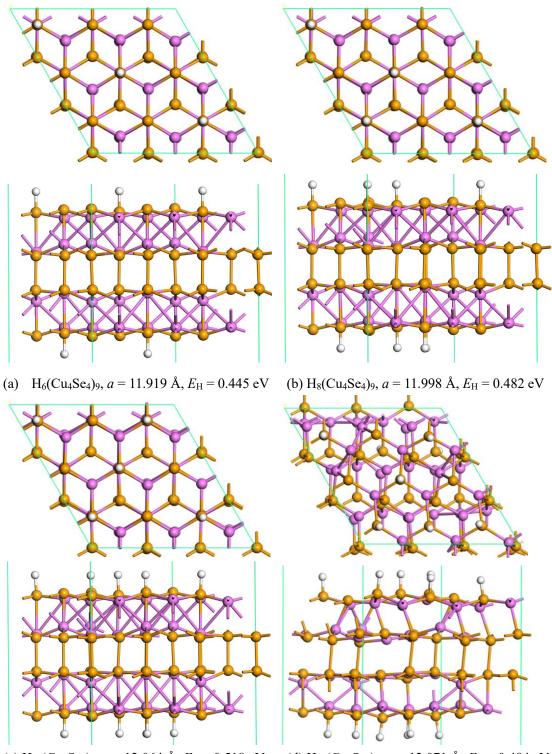
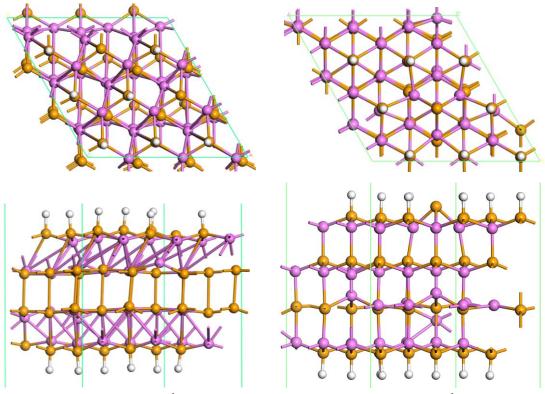

Fig. S21 Top and front views of geometric structures of (a) Cu₄Se₄, (b) NaCu₄Se₄ and (c) KCu₄Se₄ crystals.

Fig. S22 Top and front views of a proton adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell: (a) adsorbed on top of S atom and (b) on top of Cu atom.


Fig. S23 Top and front views of (a) two and (b) four protons adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S22.

(c) $H_{10}(Cu_4Se_4)_9$, a = 12.064 Å, $E_H = 0.518$ eV

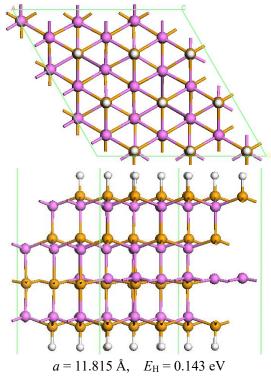

(d) $H_{12}(Cu_4Se_4)_9$, a = 12.071 Å, $E_H = 0.484$ eV

Fig. S24 Top and front views of (a) six, (b) eight, (c) ten and (d) twelve protons adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S22.

(a) $H_{14}(Cu_4Se_4)_{9}$, a = 12.245 Å, $E_H = 0.457$ eV (b) $H_{16}(Cu_4Se_4)_{9}$, a = 11.791 Å, $E_H = 0.184$ eV

Fig. S25 Top and front views of (a) fourteen and (b) sixteen protons adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S22.

Fig. S26 Top and front views of eighteen protons adsorbed on the $3 \times 3 \times 1$ Cu₄Se₄ supercell. The atoms for which balls in different colors stand are the same as in Fig. S22.