Supplementary Information

Composition Dependent Photoluminescence in Nanocrystalline La₂Hf_{2-x}Zr_xO₇:Eu Phosphor: Role of Chemical Twin Zr/Hf Environments Around Luminescent Center

Santosh K. Gupta^{1,2*}, Sandeep Nigam,^{2,3} and Yuanbing Mao^{4#}

¹Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India

²Homi Bhabha National Institute, Anushaktinagar, Mumbai – 400094, India

³Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India

⁴Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA

Corresponding authors: *santoshg@barc.gov.in and #ymao17@iit.edu

S1. CCT estimation:

The correlated colour temperatures (CCT) of LHZOE are also calculated using McCamy and Kelly approximation using equation S1^{1, 2}:

 $CCT(\mathbf{x}, \mathbf{y}) = -449n^3 + 3525n^2 - 6823.3n + 5520.33$ (S1)

where $n = (x - x_e)/(y - y_e)$ is the inverse slope line, $(x_e = 0.3320, y_e = 0.1858)$ is the "epicenter" which is close to the intersection point mentioned by Kelly.

S2. PLQY estimation:

The absolute value of the quantum yield (PLQY) is calculated by using an integrating sphere (Edinburgh, UK). For LHZO:Eu³⁺ phosphor, the PLQY was determined using the equation S2 as shown below.³

$$QY = \frac{number \ of \ photon \ emitted}{number \ of \ photon \ absorbed} = \frac{\int L \ (Eu)}{\int E \ (Reference) \ - \ \int E \ (Eu)}$$
(S2)

Where L (Eu) is the photoluminescence intensity of the phosphor (45 mg), E (reference) and E (Eu) are the excitation light intensities of the reference and the phosphor samples, respectively.

L (Eu) is the area under the curve of the photoluminescence spectrum of the phosphor sample and $\int E$ (Reference) and $\int E$ (Eu) are the areas under the excitation spectra of the reference and the phosphor sample.

S3. Judd-Ofelt Calculations:

The chemical environment effect on the luminescent properties of Eu³⁺ ions can be better understood through Judd-Ofelt theory analysis of the transition intensity parameters of the LHZOE NPs.

The determination of Ω_{λ} ($\lambda = 2, 4, \text{ and } 6$) parameters from emission spectra are necessary, where the magnetic dipole transition ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}$ can be noted as follow:

$$A_{md} = \frac{64\pi^4 k_{md}^3}{3h (2J+1)} n^3 S_{md}$$
(S3)

Here, $k_{\rm md}$ represents the energy of the magnetic dipole in wavenumber and *h* is Planck's constant, 6.626×10^{-34} J·s. In addition, the variable *n* depicts the refractive index of the host LHZO as 1.99 and 2J' + 1 is the degeneracy of the initial state (1 for ⁵D₀). Furthermore, $S_{\rm md}$ is a constant independent of the host and is equal to 9.6×10^{-42} .⁴ The electric dipole transitions can be denoted by ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{J}$ (J = 2, 4, and 6) transitions where the radiation rate can be stated as follows^{5, 6}:

$$A_{J} = \frac{64\pi^{4} e^{2} k^{3} n (n^{2} + 2)^{2}}{3h (2J + 1)} \sum_{\lambda = 2,4,6} \Omega_{\lambda} \langle \Psi J \| U^{\lambda} \| \Psi' J' \rangle^{2}$$
(S4)

In this equation, *e* is the electric charge, *k* is the transition energy of electric dipole transitions in cm⁻¹, Ω_{λ} is the intensity parameter, and $\langle \Psi J || U^{\lambda} || \Psi' J' \rangle^2$ values are the squared reduced matrix elements, whose values are 0.0032 and 0.0023 for J' = 2 and 4, respectively⁷. In all the parameters of the equations, Gaussian units are used for ease of calculating. Therefore, the transition intensity ratio between electronic dipole and magnetic dipole can be written as follow:

$$\frac{\int I_{J}(k)dk}{\int I_{md}(k)dk} = \frac{A_{J}}{A_{md}} = \frac{e^{2}k_{j}^{3}(n^{2}+2)^{2}}{k_{md}^{3}-9n^{2}}\Omega_{\lambda} \langle \Psi J \| U^{\lambda} \| \Psi' J' \rangle^{2}$$
(S5)

This can be easily simplified as follow:

$$A_{J} = \frac{64\pi^{4} e^{2} k^{3} n (n^{2} + 2)^{2}}{3h (2J + 1)} \Omega_{\lambda} \langle \Psi J \| U^{\lambda} \| \Psi' J' \rangle^{2}$$
(S6)

In equation 4, the value of $\int I_{md}(k)dk$ can be acquired from the integral area of the emission spectra. In addition, Ω_{λ} can be determined from the calculated basis of the emission spectra. However, the Ω_6 intensity parameter is not included in this calculation due to the fact that $^5D_0 \rightarrow ^7F_6$ transitions were not observed.

The internal quantum efficiency (IQE) of the ${}^{5}D_{0}$ level of Eu³⁺ ions in the LHZOE NPs can be deduced using the emission spectra and lifetimes of the former electronic transition level. We can correlate the lifetime (τ), radiative (A_{R}), and nonradiative (A_{NR}) rates through the following equation:

$$\frac{1}{\tau} = A_{R} + A_{NR} \tag{S7}$$

Here the AR rate can be determined by adding over the radiative rates for each ${}^{5}D_{0} \rightarrow {}^{7}F_{J}(J=1-4)$,

 $\sum_{J=1-4}^{A_{J}} A_{J}$. Therefore, the IQE of the emitting ⁵D₀ level is written as

$$IQE = \frac{A_R}{A_R + A_{NR}} = \tau \sum_{J=1-4} A_J$$

(S8)

In this case, the radiative contribution can be calculated from the relative intensities of the

$$\left(\beta_{J} = \frac{A_{J}}{\sum A_{J}}\right)$$

 ${}^{5}D_{0} \rightarrow {}^{7}F_{J} (J = 1-4)$ transitions. The ${}^{5}D_{0} \rightarrow {}^{7}F_{5,6}$ branching ratios $\bigwedge \qquad \square^{A_{J}}$ are neglected since both have poor relative intensity compare to the ${}^{5}D_{0} \rightarrow {}^{7}F_{1-4}$ transitions.

Figure S1: RL spectrum of for the representative Hf0.7-Zr1.3 LHZO NPs under X-ray excitation.

Figure S2: CIE index diagram for the representative Hf0.7-Zr1.3 LHZO NPs

1. Kelly, K. L., Lines of constant correlated color temperature based on MacAdam's (u, υ) uniform chromaticity transformation of the CIE diagram. *JOSA* **1963**, 53, (8), 999-1002.

2. McCamy, C. S., Correlated color temperature as an explicit function of chromaticity coordinates. *Color Research & Application* **1992**, 17, (2), 142-144.

3. Liu, H.; Ren, F.; Zhang, H.; Han, Y.; Qin, H.; Zeng, J.; Wang, Y.; Sun, Q.; Li, Z.; Gao, M., Oral administration of highly bright Cr^{3+} doped $ZnGa_2O_4$ nanocrystals for in vivo targeted imaging of orthotopic breast cancer. *Journal of Materials Chemistry B* **2018**, 6, (10), 1508-1518.

4. Carnall, W.; Fields, P.; Rajnak, K., Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, and Ho³⁺. *The Journal of Chemical Physics* **1968**, 49, 4412-4423.

5. Carnall, W.; Crosswhite, H.; Crosswhite, H. M. *Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF*₃; Argonne National Lab.(ANL), Argonne, IL (United States): 1978.

6. Ribeiro, S. J.; Diniz, R.; Messaddeq, Y.; Nunes, L. A.; Aegerter, M. A., Eu³⁺ and Gd³⁺ spectroscopy in fluoroindate glasses. *Chemical Physics Letter* **1994**, 220, 214-218.

7. Werts, M. H.; Jukes, R. T.; Verhoeven, J. W., The emission spectrum and the radiative lifetime of Eu³⁺ in luminescent lanthanide complexes. *Physical Chemistry Chemical Physics* **2002**, *4*, 1542-1548.