[Supporting Information (SI)]

Experimental and Theoretical Study of Criegee Intermediate (CH₂OO) Reactions with n-Butyraldehyde and Isobutyraldehyde: Kinetics, Implications and Atmospheric Fate

Amit Debnath^a and Balla Rajakumar^{a,b*}

^aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.

^bCentre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras,

Chennai, 600036, India

*Corresponding Email: rajakumar@iitm.ac.in

Sl. No.	Contents	Page No.
1	Figure S1: Optimized geometries along with relevant structural parameters of all the stationary points for the reactions CH ₂ OO + nBD and CH ₂ OO + iBD obtained at B3LYP/6- 311+G(2df,2p) level of theory	S4-S5
2	Table S1. Cartesian coordinate for the stationary points obtained at B3LYP/6-311+G(2df,2p) level of theory	S5-S45
3	Table S2: Vibrational frequencies obtained at B3LYP/6-311+G(2df,2p) level of theory	S45-S55
4	Table S3: Forward activation barriers and Thermochemical parameters with respect to the reactants	S56-S57
5	Table S4: T1- Diagnostics values for multi reference character calculated at CCSD(T)-F12/cc-pVTZ-F12 level of theory	S58-S59
6	Figure S2: IRC Plots for all TS connecting to the	S59-S61

	corresponding reactants and products obtained at B3LYP/6-	
	311+G(2df,2p) level of theory	
7	Section S2: Details of MESMER Simulation	S61-S63
8	Table S5: Calculated L-J parameters for the intermediates	S62-S63
9	Table S6: Experimentally obtained pseudo-1st order ratecoefficients for the reactions $CH_2OO + nBD$ and $CH_2OO + iBD$	S63-S65
10	Figure S3: Sensitivity test of k_{exp} on rate coefficients of the title reactions	S65
11	Section S3: Thermochemistry	S65-S66
12	Table S7: Thermochemical parameters for various pathwaysfor $CH_2OO + nBD$ and $CH_2OO + iBD$	S66
13	Table S8: Equilibrium constant between the reactants and theIM1 calculated at CCSD(T)-F12/cc-pVTZ-F12//B3LYP/6-311+G(2df,2p) level of theory	S66-S67
14	Table S9. Calculated CVT and CVT/SCT rate coefficients showing the tunnelling effect for IM1 \rightarrow SOZ step in both the reactions.	S67
15	Table S10. Rate coefficients for CH2OO + nBD and CH2OO +iBD obtained from CVT/SCT and MESMER calculations	S67-S68
16	Section S4: Error propagation due to uncertainties of the concentration measurement	S68-S69
17	Table S11: Propagated upper and lower limit of the rate coefficients	S68-S69

18	Table S12. Rate coefficients for the product formation pathways from SOZs obtained from and MESMER calculations	S69-S70
10	Section S5: Cumulative Atmospheric Lifetime calculation and	\$70 \$72
19	rate comparison of $CH_2OO + nBD/iBD$ with $OH + nBD/iBD$	570-572
20	Table S13. Rate ratios for the reactions $CH_2OO + nBD$ and OH	071
20	+ nBD (top) and CH ₂ OO + iBD and OH + iBD (bottom).	5/1
21	References	S72-S73

Criegee Intermediate

IM3n

H3 1.16 1.2 TS5n

TS9n

.287

2.261

6

Iso-butyraldehyde

1.213

IM3i

١

Figure S1. Optimized geometries along with relevant structural parameters of all the stationary points (viz. reactants, pre and post-reactive complexes (IM), transition states (TS) and products) for the reactions $CH_2OO + nBD$ and $CH_2OO + iBD$ obtained at B3LYP/6-311+G(2df,2p).

Table S1. Cartesian coordinates optimised at B3LYB/6-311+G(3df,2p) level of theory:

Table S1.1. Optimised parameters of CH₂OO.

Cartesian coordinate					
Center No.	Atom	Atomic No.	X	Y	Z
1	С	6	1.069420	-0.197420	0
2	Н	1	1.973480	0.394200	0
3	Н	1	1.029020	-1.279770	0
4	Ο	8	0.000000	0.456880	0
5	О	8	-1.177380	-0.198120	0

 Table S1.2. Optimised parameters of nBD.

Cartesian coordinate						
Center No.	Atom	Atomic No.	X	Y	Z	
1	С	6	-1.459320	-0.218620	0.285180	
2	0	8	-2.421330	0.110210	-0.360290	
3	Н	1	-1.519740	-1.095230	0.965920	
4	С	6	1.010590	-0.503510	-0.138090	
5	Н	1	0.988710	-1.372560	0.524950	
6	Н	1	0.824310	-0.881540	-1.145950	
7	С	6	-0.118930	0.463370	0.251030	
8	Н	1	0.076290	0.850640	1.258150	
9	Н	1	-0.171120	1.311350	-0.432060	
10	С	6	2.390140	0.150140	-0.080260	

11	Н	1	2.617100	0.504030	0.926900
12	Н	1	3.170830	-0.553640	-0.369640
13	Н	1	2.449440	1.006930	-0.753080

 Table S1.2. Optimised parameters of iBD.

Cartesian coordinate						
Center No.	Atom	Atomic No.	X	Y	Z	
1	С	6	0.424730	0.011300	0.412360	
2	Н	1	0.591480	-0.042070	1.497030	
3	С	6	-0.936770	-0.613910	0.202850	
4	0	8	-1.894830	-0.061620	-0.272650	
5	Н	1	-1.008110	-1.674580	0.527060	
6	С	6	0.480420	1.465900	-0.041100	
7	Н	1	0.314180	1.543100	-1.115720	
8	Н	1	-0.286090	2.063340	0.449730	
9	Н	1	1.454800	1.899340	0.185020	
10	С	6	1.495320	-0.868770	-0.255060	
11	Н	1	2.492750	-0.508890	-0.004930	
12	Н	1	1.424440	-1.907900	0.069740	
13	Н	1	1.392880	-0.846520	-1.341060	

 Table S1.3. Optimised parameters of IM1n.

Cartesian coordinate						
Center No.	Atom	Atomic No.	X	Y	Z	
1	С	6	-0.006010	1.042194	-0.688260	
2	Н	1	0.501667	1.215995	-1.653420	
3	0	8	0.465093	1.490490	0.336584	
4	0	8	1.519590	-1.173070	-0.712230	
5	0	8	2.595051	-0.531790	-0.169730	
6	С	6	2.506109	-0.126150	1.008718	
7	Н	1	3.370433	0.408492	1.378151	
8	Н	1	1.614552	-0.326320	1.585429	
9	С	6	-1.311100	0.304067	-0.786380	
10	Н	1	-1.127080	-0.592850	-1.384580	
11	С	6	-1.974860	-0.036210	0.542521	
12	Н	1	-1.299070	-0.669050	1.120755	
13	Н	1	-2.106380	0.877256	1.124894	
14	Н	1	-1.968900	0.930634	-1.404220	
15	С	6	-3.318010	-0.742610	0.363965	
16	Н	1	-3.204820	-1.677560	-0.187930	
17	Н	1	-3.769970	-0.980490	1.327358	
18	Н	1	-4.025060	-0.118920	-0.186810	

Table S1.6. Optimised parameters of SOZ-n.

Cartesian coordinate

Center No.	Atom	Atomic No.	Х	Y	Z
1	С	6	-0.438190	-0.454600	0.694744
2	Н	1	-0.858390	-1.006800	1.542005
3	О	8	-0.959020	0.874094	0.721858
4	0	8	-0.934130	-1.003950	-0.515950
5	0	8	-2.278300	-0.451230	-0.532540
6	С	6	-1.994370	0.902368	-0.240520
7	Н	1	-2.905610	1.335478	0.172481
8	Н	1	-1.657530	1.436165	-1.134060
9	С	6	1.077202	-0.492180	0.701124
10	Н	1	1.378421	-1.543030	0.696580
11	С	6	1.759376	0.266960	-0.437600
12	Н	1	1.451903	-0.158950	-1.393460
13	Н	1	1.414727	1.302183	-0.432050
14	С	6	3.282873	0.229397	-0.322240
15	Н	1	3.753177	0.774712	-1.140780
16	Н	1	3.621810	0.679940	0.612713
17	Н	1	3.658928	-0.795190	-0.349500
18	Н	1	1.392836	-0.087500	1.666074

Table S1.4.	Optimised	parameters	of IM2n.
-------------	-----------	------------	----------

Cartesian coordinate					
Center No.	Atom	Atomic No.	Х	Y	Z

1	C	6	0.364757	0.431061	0.492710
2	Н	1	0.905047	0.672098	1.410637
3	0	8	0.926864	-0.851210	0.034737
4	0	8	0.539447	1.416141	-0.465610
5	0	8	2.990626	0.064808	-0.033800
6	С	6	2.242323	-0.871980	-0.160820
7	Н	1	1.481122	1.625654	-0.504250
8	Н	1	2.562123	-1.876330	-0.463510
9	С	6	-1.107700	0.202248	0.758158
10	Н	1	-1.490260	1.117384	1.216434
11	С	6	-1.939620	-0.150050	-0.476730
12	Н	1	-1.829770	0.640142	-1.219920
13	Н	1	-1.544200	-1.060310	-0.930460
14	С	6	-3.417280	-0.343150	-0.138150
15	Н	1	-3.995620	-0.594050	-1.027650
16	Н	1	-3.558530	-1.148570	0.585501
17	Н	1	-3.848200	0.563841	0.290492
18	Н	1	-1.192160	-0.586550	1.509027

 Table S1.5. Optimised parameters of IM3n.

Cartesian coordinate							
Center No.AtomAtomic No.XYZ							
1	С	6	0.178625	0.538328	0.105015		

Н	1	3.224202	-1.192080	0.932183
0	8	0.922940	-0.589150	-0.080300
0	8	0.560965	1.642110	-0.177160
0	8	3.179005	-0.345050	0.478244
С	6	2.264759	-0.428220	-0.567130
Н	1	2.433090	-1.301430	-1.197370
Н	1	2.339621	0.495197	-1.131610
С	6	-1.185880	0.202950	0.650816
Н	1	-1.548620	1.082326	1.181365
С	6	-2.169260	-0.174260	-0.471510
Н	1	-2.219700	0.647694	-1.188440
Н	1	-1.781250	-1.039930	-1.011650
Н	1	-1.100730	-0.622550	1.358140
С	6	-3.566280	-0.480870	0.063883
Н	1	-3.986960	0.379569	0.586873
Н	1	-4.247450	-0.741850	-0.746400
Н	1	-3.547270	-1.317770	0.764185
	Н О О С Н Н С Н С Н Ц С Н Н С Н Н Ц Н Ц Н	H1O8O8O8C6H1C6H1C6H1C6H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1	H13.224202O80.922940O80.560965O83.179005C62.264759H12.433090H12.339621C6-1.185880H1-1.548620C6-2.169260H1-2.219700H1-1.781250H1-1.100730C6-3.566280H1-3.986960H1-4.247450H1-3.547270	H13.224202-1.192080O80.922940-0.589150O80.5609651.642110O83.179005-0.345050C62.264759-0.428220H12.433090-1.301430H12.3396210.495197C6-1.1858800.202950H1-1.5486201.082326C6-2.169260-0.174260H1-1.781250-1.039930H1-1.100730-0.622550C6-3.566280-0.480870H1-3.9869600.379569H1-4.247450-0.741850H1-3.547270-1.317770

 Table S1.6. Optimised parameters of IM4n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	Х	Y	Z		
1	С	6	-0.438220	-0.454470	0.694963		
2	Н	1	-0.858360	-1.006490	1.542316		

3	0	8	-0.959100	0.874238	0.721764
4	0	8	-0.933990	-1.003980	-0.515720
5	0	8	-2.27816	-0.451420	-0.532490
6	С	6	-1.994380	0.902287	-0.240840
7	Н	1	-2.905620	1.335600	0.171943
8	Н	1	-1.657430	1.435924	-1.134450
9	С	6	1.759318	0.266266	-0.438090
10	Н	1	1.452318	-0.161010	-1.393480
11	Н	1	1.414223	1.301354	-0.433980
12	С	6	1.077134	-0.491660	0.701489
13	Н	1	1.378712	-1.542420	0.698295
14	Н	1	1.392545	-0.085640	1.665950
15	С	6	3.282795	0.229508	-0.322200
16	Н	1	3.753131	0.774070	-1.141220
17	Н	1	3.621233	0.681283	0.612340
18	Н	1	3.659312	-0.794940	-0.348150

 Table S1.7. Optimised parameters of POZ-n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	Х	Y	Z		
1	С	6	1.551244	1.131635	0.022183		
2	Н	1	1.269137	1.646589	-0.898480		
3	С	6	0.356176	0.309631	0.581854		

4	0	8	0.835269	-1.041740	0.499031
5	0	8	2.560686	0.163833	-0.228900
6	С	8	1.777207	-0.985370	-0.587390
7	Н	1	1.965623	1.836042	0.740388
8	С	6	-0.939310	0.524416	-0.186120
9	Н	1	-0.773500	0.233854	-1.227050
10	С	6	-2.131250	-0.23768	0.393300
11	Н	1	-2.287560	0.072928	1.430750
12	Н	1	-1.891060	-1.302100	0.425058
13	Н	1	0.215502	0.486670	1.649454
14	С	6	-3.416800	-0.022370	-0.403720
15	Н	1	-4.249740	-0.574450	0.032113
16	Н	1	-3.696570	1.032707	-0.429910
17	Н	1	-3.301650	-0.358400	-1.435740
18	Н	1	-1.155810	1.598533	-0.193620

 Table S1.8. Optimised parameters of TS1n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	Х	Y	Z		
1	С	6	-0.334940	0.531830	-0.353330		
2	Н	1	-0.226550	0.667085	-1.450510		
3	0	8	-0.775910	-0.842310	-0.130690		
4	0	8	-1.156710	1.395504	0.154708		

5	0	8	-2.971420	-0.186780	-0.277270
6	С	6	-2.065750	-0.776590	0.398644
7	С	1	2.092212	-0.366500	-0.410940
8	Н	1	1.712709	-1.384040	-0.316890
9	Н	1	2.156918	-0.155120	-1.481450
10	Н	1	-2.339090	-1.703070	0.927158
11	Н	1	-1.841530	0.005302	1.269423
12	С	6	1.118631	0.605800	0.241303
13	Н	1	1.433851	1.640036	0.103982
14	С	6	3.486172	-0.27267	0.214202
15	Н	1	3.460315	-0.51554	1.277666
16	Н	1	4.174133	-0.96785	-0.267510
17	Н	1	3.902305	0.730938	0.113097
18	Н	1	1.021279	0.41975	1.311785

 Table S1.9. Optimised parameters of TS2n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	-0.334940	0.531830	-0.353330		
2	Н	1	-0.226550	0.667085	-1.450510		
3	Ο	8	-0.775910	-0.842310	-0.130690		
4	0	8	-1.156710	1.395504	0.154708		

5	0	8	-2.971420	-0.186780	-0.277270
6	С	6	-2.065750	-0.776590	0.398644
7	С	6	2.092212	-0.366500	-0.410940
8	Н	1	1.712709	-1.384040	-0.316890
9	Н	1	2.156918	-0.155120	-1.481450
10	Н	1	-2.339090	-1.703070	0.927158
11	Н	1	-1.841530	0.005302	1.269423
12	С	6	1.118631	0.605800	0.241303
13	Н	1	1.433851	1.640036	0.103982
14	С	6	3.486172	-0.272670	0.214202
15	Н	1	3.460315	-0.515540	1.277666
16	Н	1	4.174133	-0.967850	-0.267510
17	Н	1	3.902305	0.730938	0.113097
18	Н	1	1.021279	0.419750	1.311785

 Table S1.10. Optimised parameters of TS3n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	Х	Y	Z		
1	С	6	0.228451	0.632804	0.659141		
2	Н	1	0.802839	0.673065	1.585833		
3	Ο	8	1.139511	-1.102240	0.339738		
4	Ο	8	0.623592	1.326887	-0.332080		
5	Ο	8	2.747625	0.265896	-0.431700		

6	С	6	2.277362	-0.874550	-0.144490
7	Н	1	1.740954	1.056428	-0.406240
8	Н	1	2.922950	-1.742570	-0.336520
9	С	6	-1.202880	0.239545	0.789490
10	Н	1	-1.688390	1.070570	1.318985
11	С	6	-1.922750	-0.045930	-0.527260
12	Н	1	-1.846750	0.827248	-1.175390
13	Н	1	-1.402180	-0.856540	-1.039710
14	Н	1	-1.252170	-0.615820	1.465587
15	С	6	-3.389190	-0.417660	-0.315790
16	Н	1	-3.881330	-0.624080	-1.266170
17	Н	1	-3.488860	-1.308080	0.307784
18	Н	1	-3.938870	0.390090	0.171652

 Table S1.11. Optimised parameters of TS4n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	Х	Y	Z		
1	С	6	-0.362140	-0.306160	0.192778		
2	Н	1	-1.021150	-0.523210	1.155925		
3	Ο	8	-0.931080	0.937501	-0.137140		
4	Ο	8	-0.686100	-1.289890	-0.556100		
5	Ο	8	-2.748130	-0.400830	0.321051		

6	С	6	-2.370540	0.742409	-0.168310
7	Н	1	-2.751230	1.611687	0.402734
8	Н	1	-2.710600	0.894638	-1.214650
9	С	6	2.063659	0.100059	-0.462780
10	Н	1	1.988912	-0.703660	-1.196760
11	Н	1	1.759286	1.018576	-0.966810
12	С	6	1.093225	-0.189380	0.689033
13	Н	1	1.351304	-1.128290	1.178094
14	Н	1	1.122583	0.605278	1.434645
15	С	6	3.502207	0.229588	0.033766
16	Н	1	4.180456	0.436576	-0.794690
17	Н	1	3.603841	1.043138	0.754306
18	Н	1	3.840546	-0.688110	0.517861

 Table S1.12. Optimised parameters of TS5n.

	Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z			
1	С	6	-0.232740	-0.072590	0.423815			
2	Н	1	-1.730860	1.126238	0.101431			
3	Ο	8	-0.958300	-1.040280	0.051225			
4	Ο	8	-0.681360	1.112928	0.595864			
5	Ο	8	-2.678900	0.667965	-0.596730			

6	С	6	-2.685570	-0.544730	-0.208180
7	Н	1	-2.942230	-1.320240	-0.931550
8	Н	1	-2.954960	-0.784770	0.825952
9	С	6	2.075521	0.196612	-0.534340
10	Н	1	1.759542	-0.319240	-1.443480
11	Н	1	1.869457	1.257014	-0.686100
12	С	6	1.232722	-0.311170	0.650067
13	Н	1	1.394714	-1.377300	0.801797
14	Н	1	1.521378	0.221073	1.558074
15	С	6	3.570405	-0.019160	-0.309750
16	Н	1	3.803787	-1.076890	-0.177020
17	Н	1	4.148103	0.343572	-1.159990
18	Н	1	3.917521	0.511720	0.578288

 Table S1.13. Optimised parameters of TS6n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	-0.237730	-0.352210	0.775000		
2	Н	1	-0.897190	-0.206910	1.619379		
3	О	8	-1.497420	1.412852	0.053586		
4	О	8	-0.668600	-1.030590	-0.198510		
5	0	8	-2.049070	-1.197430	-0.206200		
6	С	6	-2.516590	0.849913	-0.362940		

7	Н	1	-3.383070	0.679020	0.287651
8	Н	1	-2.699220	0.739713	-1.437960
9	С	6	1.982333	-0.165760	-0.471380
10	Н	1	1.969808	-1.224040	-0.736340
11	Н	1	1.483629	0.360677	-1.286090
12	С	6	1.185155	0.048922	0.814482
13	Н	1	1.646865	-0.478960	1.659028
14	Н	1	1.185313	1.104615	1.104309
15	С	6	3.423989	0.320582	-0.336680
16	Н	1	3.975651	0.162544	-1.262870
17	Н	1	3.463360	1.386536	-0.106070
18	Н	1	3.952540	-0.210590	0.457176

 Table S1.14. Optimised parameters of TS7n..

Cartesian coordinate							
Center No.	Atom	Atomic No.	Х	Y	Z		
1	С	6	0.316547	0.784178	0.580043		
2	Н	1	0.855642	1.027268	1.497550		
3	0	8	1.128545	-1.073970	0.697044		
4	0	8	0.768191	1.173629	-0.522010		
5	0	8	2.509356	0.332482	-0.402340		
6	С	6	1.968969	-0.891030	-0.263330		
7	Н	1	3.097686	-1.126080	-0.017240		

8	Н	1	1.780389	-1.428130	-1.211280
9	С	6	-1.827920	-0.128530	-0.504350
10	Н	1	-1.710420	0.560474	-1.341160
11	Н	1	-1.314540	-1.049320	-0.785160
12	С	6	-1.148250	0.452813	0.732217
13	Н	1	-1.624870	1.398603	1.019003
14	Н	1	-1.245180	-0.211460	1.591454
15	С	6	-3.310090	-0.412360	-0.264930
16	Н	1	-3.777180	-0.831230	-1.156370
17	Н	1	-3.452410	-1.125930	0.548704
18	Н	1	-3.853430	0.498242	-0.004920

 Table S1.15. Optimised parameters of TS8n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	0.363073	0.384434	0.482282		
2	Н	1	0.396043	1.202309	1.404323		
3	0	8	0.814003	-0.811320	0.755984		
4	0	8	1.317478	1.297850	0.295975		
5	0	8	2.219862	0.070896	-1.021160		
6	С	6	2.245163	-0.875520	-0.158980		
7	Н	1	2.972697	-0.842100	0.657937		
8	Н	1	2.069869	-1.879070	-0.563580		

9	С	6	-2.099300	-0.293500	0.370913
10	Н	1	-1.788440	-1.334330	0.466950
11	Н	1	-2.284510	0.066789	1.386658
12	С	6	-0.961070	0.513252	-0.254410
13	Н	1	-0.756870	0.164673	-1.271270
14	Н	1	-1.218210	1.570839	-0.322090
15	С	6	-3.387720	-0.205150	-0.445510
16	Н	1	-3.242290	-0.593870	-1.454840
17	Н	1	-4.187050	-0.782110	0.019545
18	Н	1	-3.732830	0.826360	-0.535860

 Table S1.16. Optimised parameters of TS9n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	0	8	0.700432	-1.231960	0.077913		
2	С	6	0.202230	-0.142100	0.506319		
3	С	6	1.486717	1.133191	-0.004340		
4	0	8	2.582739	0.425873	0.220914		
5	О	8	2.621729	-0.635050	-0.559930		
6	Н	1	1.426475	2.003166	0.638025		
7	С	6	-1.062920	0.407851	-0.162920		
8	Н	1	-0.952680	0.308744	-1.244450		
9	С	6	-2.303650	-0.359970	0.307745		

10	Н	1	-2.175810	-1.414530	0.056906
11	Н	1	-2.369130	-0.307950	1.398113
12	Н	1	1.198381	1.226978	-1.044010
13	Н	1	0.237193	0.022517	1.598146
14	Н	1	-1.181430	1.470804	0.070165
15	С	6	-3.594860	0.174763	-0.309520
16	Н	1	-4.459620	-0.390770	0.038602
17	Н	1	-3.757440	1.222224	-0.048110
18	Н	1	-3.570280	0.105468	-1.398350

 Table S1.16. Optimised parameters of TS10n.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	0	8	0.700432	-1.231960	0.077913		
2	С	6	0.202230	-0.142100	0.506319		
3	С	6	1.486717	1.133191	-0.004340		
4	0	8	2.582739	0.425873	0.220914		
5	0	8	2.621729	-0.635050	-0.559930		
6	Н	1	1.426475	2.003166	0.638025		
7	С	6	-1.062920	0.407851	-0.162920		
8	Н	1	-0.952680	0.308744	-1.244450		
9	С	6	-2.303650	-0.359970	0.307745		
10	Н	1	-2.175810	-1.414530	0.056906		

11	Н	1	-2.369130	-0.307950	1.398113
12	Н	1	1.198381	1.226978	-1.044010
13	Н	1	0.237193	0.022517	1.598146
14	Н	1	-1.181430	1.470804	0.070165
15	С	6	-3.594860	0.174763	-0.30952
16	Н	1	-4.459620	-0.390770	0.038602
17	Н	1	-3.757440	1.222224	-0.048110
18	Н	1	-3.570280	0.105468	-1.398350

 Table S1.17. Optimised parameters of IM1i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	Х	Y	Z		
1	С	6	0.432120	-0.153590	0.766290		
2	Н	1	0.220270	-1.102160	1.292220		
3	0	8	-0.142570	0.863870	1.091870		
4	0	8	-1.555850	-1.053230	-0.823080		
5	0	8	-2.529830	-0.537860	-0.018220		
6	С	6	-2.626140	0.704870	0.068660		
7	С	6	2.818630	-0.702340	0.417010		
8	Н	1	3.592210	-0.899260	-0.324770		
9	Н	1	3.190860	0.066980	1.09555		
10	Н	1	2.668790	-1.617310	0.991990		
11	Н	1	-3.38830	1.061460	0.747850		

12	Н	1	-1.980360	1.341310	-0.519110
13	С	6	1.521050	-0.245750	-0.276010
14	Н	1	1.203920	-1.048600	-0.948710
15	С	6	1.700490	1.045770	-1.065400
16	Н	1	2.483170	0.927300	-1.815150
17	Н	1	0.780420	1.323000	-1.577940
18	Н	1	1.978160	1.871260	-0.409780

 Table S1.18. Optimised parameters of SOZ-i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	-0.037670	-0.276280	-0.548260		
2	Н	1	-0.094800	-1.000840	-1.368100		
3	0	8	-0.568460	-0.887350	0.627040		
4	0	8	-0.915210	0.805780	-0.814100		
5	0	8	-2.196980	0.211170	-0.471280		
6	С	6	-1.874840	-0.367890	0.776330		
7	С	6	2.344060	-0.944410	-0.216640		
8	Н	1	3.374120	-0.592650	-0.161760		
9	Н	1	2.129660	-1.504650	0.693780		
10	Н	1	2.27048	-1.63127	-1.06102		
11	Н	1	-2.59693	-1.16524	0.95291		
12	Н	1	-1.89005	0.38075	1.5739		

13	С	6	1.38449	0.24142	-0.36504
14	Н	1	1.62391	0.76091	-1.29807
15	С	6	1.51227	1.22851	0.79691
16	Н	1	2.53464	1.60242	0.85685
17	Н	1	0.84764	2.08171	0.67399
18	Н	1	1.27669	0.74395	1.74443

 Table S1.19. Optimised parameters of IM2i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	-0.041720	0.230368	-0.502100		
2	Н	1	-0.379680	-0.240950	-1.427980		
3	0	8	-0.655950	-0.550990	0.582346		
4	0	8	-0.441760	1.555025	-0.437720		
5	0	8	-2.709720	-0.137970	-0.262680		
6	С	6	-1.981570	-0.653720	0.547942		
7	С	6	1.946254	-1.315700	-0.541800		
8	Н	1	3.035338	-1.356910	-0.533980		
9	Н	1	1.582112	-1.960590	0.257996		
10	Н	1	1.605766	-1.731090	-1.492000		
11	Н	1	-1.375110	1.593485	-0.681330		
12	Н	1	-2.332050	-1.280490	1.376777		
13	С	6	1.469557	0.126415	-0.350410		

14	Н	1	1.861780	0.730616	-1.173290
15	С	6	1.967725	0.727615	0.966780
16	Н	1	3.057789	0.72592	0.988183
17	Н	1	1.626716	1.753934	1.087767
18	Н	1	1.615265	0.147616	1.819798

 Table S1.20. Optimised parameters of IM3i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	-0.144120	-0.532700	-0.370330		
2	Н	1	2.681025	1.582937	0.321487		
3	0	8	0.619882	0.040875	0.601206		
4	0	8	0.287136	-1.308720	-1.180560		
5	0	8	2.721380	0.741821	-0.143680		
6	С	6	2.031282	-0.223340	0.583195		
7	С	6	-1.706350	1.428014	-0.570120		
8	Н	1	-2.757210	1.717404	-0.598570		
9	Н	1	-1.214300	2.012851	0.206292		
10	Н	1	-1.260050	1.6889999	-1.529840		
11	Н	1	2.319768	-0.236480	1.634155		
12	Н	1	2.217060	-1.178470	0.103647		
13	С	6	-1.588890	-0.076260	-0.285410		

14	Н	1	-2.096330	-0.625470	-1.078310
15	С	6	-2.218940	-0.450360	1.063179
16	Н	1	-3.276970	-0.186660	1.062131
17	Н	1	-2.141190	-1.520370	1.257663
18	Н	1	-1.736830	0.081346	1.882555

 Table S1.21. Optimised parameters of IM4i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	-0.190120	-0.335510	-0.684410		
2	Н	1	0.305038	0.166756	-1.507110		
3	0	8	1.351705	1.415165	0.333345		
4	0	8	0.473128	-1.184520	-0.041800		
5	0	8	1.819173	-1.289430	-0.362180		
6	6	6	2.393280	0.784515	0.422447		
7	6	6	-1.904430	1.405165	-0.321560		
8	Н	1	-2.974330	1.571261	-0.203250		
9	Н	1	-1.377970	1.865132	0.512101		
10	Н	1	-1.581270	1.901769	-1.235980		
11	Н	1	3.147090	0.793854	-0.376420		
12	Н	1	2.692412	0.295076	1.358751		
13	С	6	-1.624150	-0.109860	-0.367970		

14	Н	1	-2.164980	-0.509800	-1.238310
15	С	6	-2.097000	-0.838540	0.889549
16	Н	1	-3.162840	-0.666730	1.033271
17	Н	1	-1.929660	-1.912220	0.824062
18	Н	1	-1.571050	-0.469530	1.769672

 Table S1.22. Optimised parameters of POZ-i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	1.018819	1.165953	0.128235		
2	Н	1	0.717467	1.643656	-0.805880		
3	С	6	0.021506	0.039520	0.522388		
4	0	8	0.819330	-1.147340	0.388265		
5	0	8	2.260526	0.497029	-0.032610		
6	0	8	1.833526	-0.765940	-0.560860		
7	Н	1	1.163591	1.911436	0.906954		
8	С	6	-1.253300	0.004247	-0.323750		
9	Н	1	-0.941000	-0.045370	-1.371410		
10	С	6	-2.090290	-1.236940	-0.005490		
11	Н	1	-2.430140	-1.223740	1.032987		
12	Н	1	-2.975340	-1.275520	-0.641380		
13	Н	1	-1.519480	-2.150450	-0.161540		
14	Н	1	-0.230000	0.086642	1.584536		

15	С	6	-2.068290	1.285367	-0.110900
16	Н	1	-2.382190	1.378687	0.931480
17	Н	1	-1.510990	2.185535	-0.373590
18	Н	1	-2.969640	1.270187	-0.723480

 Table S1.23. Optimised parameters of TS1i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	0.219230	-0.728670	0.013050		
2	Н	1	0.070360	-1.637270	-0.585720		
3	0	8	-0.338140	-0.632520	1.121610		
4	0	8	-1.243150	0.210600	-1.248270		
5	0	8	-2.313380	-0.187410	-0.464870		
6	С	6	-2.253410	0.265900	0.710420		
7	С	6	2.682270	-0.707300	-0.081560		
8	Н	1	3.565490	-0.186620	-0.452100		
9	Н	1	2.798260	-0.849220	0.993840		
10	Н	1	2.654480	-1.691580	-0.551480		
11	Н	1	-2.977310	-0.151930	1.397910		
12	Н	1	-1.677920	1.150710	0.927830		
13	С	6	1.413570	0.109810	-0.393390		
14	Н	1	1.352160	0.232800	-1.477260		
15	С	6	1.440960	1.480370	0.276410		

16	Н	1	2.329620	2.033530	-0.029180
17	Н	1	0.568330	2.069380	-0.003090
18	Н	1	1.458260	1.384280	1.361950

 Table S1.24. Optimised parameters of TS2i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	-0.028110	-0.070040	-0.710270		
2	Н	1	0.030570	-0.762070	-1.576080		
3	О	8	-0.584070	-0.815080	0.406210		
4	0	8	-0.703150	0.994010	-0.982170		
5	О	8	-2.724540	-0.161980	-0.125990		
6	С	6	-1.800250	-0.213250	0.748840		
7	С	6	2.235050	-1.123620	-0.114600		
8	Н	1	3.295370	-0.93350	0.061200		
9	Н	1	1.840030	-1.652750	0.751350		
10	Н	1	2.154360	-1.780610	-0.981160		
11	Н	1	-2.086210	-0.447060	1.786510		
12	Н	1	-1.412560	0.912310	0.791140		
13	С	6	1.512370	0.197930	-0.334670		
14	Н	1	1.883760	0.681990	-1.239200		
15	С	6	1.636550	1.153150	0.842690		

16	Н	1	1.224830	0.720060	1.754450
17	Н	1	2.69219	1.360180	1.026960
18	Н	1	1.137910	2.100710	0.648570

 Table S1.25. Optimised parameters of TS3i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	0.124280	0.350560	-0.694050		
2	Н	1	-0.186500	-0.256100	-1.546810		
3	0	8	-0.806440	-1.011380	0.422770		
4	0	8	-0.537110	1.403760	-0.424540		
5	0	8	-2.588930	0.241030	-0.135340		
6	С	6	-2.035880	-0.748260	0.429740		
7	С	6	2.104090	-1.180690	-0.501240		
8	Н	1	1.646340	-1.876040	0.199960		
9	Н	1	1.907510	-1.541060	-1.512160		
10	Н	1	3.182430	-1.197220	-0.347300		
11	Н	1	-1.626950	1.033510	-0.428580		
12	Н	1	-2.691720	-1.439830	0.976490		
13	С	6	1.563360	0.235590	-0.291000		
14	Н	1	2.062570	0.899710	-1.012560		
15	С	6	1.825120	0.775340	1.116230		

16	Н	1	2.895810	0.790660	1.318070
17	Н	1	1.437890	1.785290	1.231890
18	Н	1	1.346620	0.138490	1.859890

Table S1.26. Optimised parameters of TS4i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	0.079610	-0.288500	-0.266460		
2	Н	1	0.591562	0.347175	-1.127730		
3	0	8	0.642957	0.394550	0.826483		
4	0	8	0.542711	-1.453630	-0.499310		
5	0	8	2.415899	0.082824	-0.610040		
6	С	6	2.075386	0.452971	0.588618		
7	С	6	-1.800030	1.431240	-0.412570		
8	Н	1	-2.877640	1.558550	-0.523320		
9	Н	1	-1.501590	1.899475	0.524555		
10	Н	1	-1.314060	1.964915	-1.229850		
11	Н	1	2.317726	1.510768	0.809899		
12	Н	1	2.577701	-0.144850	1.378367		
13	С	6	-1.456600	-0.054260	-0.421490		
14	Н	1	-1.703430	-0.487180	-1.391120		
15	С	6	-2.191130	-0.835140	0.6754650		

16	Н	1	-3.268190	-0.730660	0.5374670
17	Н	1	-1.939880	-1.893610	0.6392040
18	Н	1	-1.938200	-0.452430	1.6640050

 Table S1.27. Optimised parameters of TS5i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	0.044660	-0.077830	-0.144420		
2	Н	1	-1.430990	-0.349680	1.093255		
3	0	8	-0.794130	0.241359	-1.036070		
4	0	8	-0.294040	-0.546580	0.996483		
5	0	8	-2.547370	0.144105	0.759230		
6	С	6	-2.509510	-0.035400	-0.500510		
7	С	6	2.314601	-1.148720	-0.116640		
8	Н	1	3.366159	-0.989990	-0.355390		
9	Н	1	2.237046	-1.406520	0.938380		
10	Н	1	1.961867	-1.998800	-0.701090		
11	Н	1	-2.974870	0.711153	-1.146090		
12	Н	1	-2.516610	-1.052200	-0.907580		
13	С	6	1.515907	0.122272	-0.429800		
14	Н	1	1.590688	0.348528	-1.493460		
15	С	6	2.027925	1.329401	0.373912		

16	Н	1	3.076720	1.509807	0.138508
17	Н	1	1.468458	2.234238	0.136864
18	Н	1	1.944376	1.144066	1.444282

Table S1.28. Optimised parameters of TS6i.

Cartesian coordinate						
Center No.	Atom	Atomic No.	X	Y	Z	
1	С	6	-0.113690	-0.283810	-0.679490	
2	Н	1	0.322494	0.268889	-1.500810	
3	0	8	1.084765	1.327702	0.438534	
4	0	8	0.600327	-1.159110	-0.116140	
5	0	8	1.958103	-1.053870	-0.400250	
6	С	6	2.221414	0.837584	0.440458	
7	С	6	-2.009290	1.277757	-0.385850	
8	Н	1	-3.091170	1.330871	-0.272330	
9	Н	1	-1.538280	1.831371	0.423178	
10	Н	1	-1.742580	1.762008	-1.325130	
11	Н	1	2.943970	1.067056	-0.352270	
12	Н	1	2.639683	0.392818	1.350576	
13	С	6	-1.563310	-0.194780	-0.360100	
14	Н	1	-2.058160	-0.697660	-1.204550	
15	С	6	-1.947440	-0.908290	0.936591	

16	Н	1	-3.023390	-0.835940	1.089742
17	Н	1	-1.675690	-1.962050	0.917071
18	Н	1	-1.448540	-0.445980	1.787776

Table S1.29. Optimised parameters of TS7i.

Cartesian coordinate						
Center No.	Atom	Atomic No.	X	Y	Z	
1	С	6	-0.065370	-0.277810	-0.781400	
2	Н	1	0.152083	0.372505	-1.631600	
3	0	8	0.759356	1.171366	0.408249	
4	0	8	0.694031	-1.241160	-0.532770	
5	0	8	2.344698	-0.249320	-0.345810	
6	С	6	1.841590	0.511625	0.642383	
7	С	6	-2.155180	1.084381	-0.435170	
8	Н	1	-3.228140	1.009390	-0.258110	
9	Н	1	-1.730170	1.782321	0.283301	
10	Н	1	-2.011910	1.498206	-1.434240	
11	Н	1	2.850175	1.082594	0.428989	
12	Н	1	1.973709	0.099158	1.659838	
13	С	6	-1.505260	-0.293210	-0.296300	
14	Н	1	-1.987660	-0.967470	-1.017700	
15	С	6	-1.662420	-0.893200	1.099878	

16	Н	1	-2.719910	-0.995500	1.343210
17	Н	1	-1.199290	-1.875400	1.167814
18	Н	1	-1.203760	-0.243650	1.844802

 Table S1.30. Optimised parameters of TS8i.

Cartesian coordinate						
Center No.	Atom	Atomic No.	X	Y	Z	
1	С	6	-0.039940	0.005208	0.480148	
2	Н	1	0.218716	-0.501320	1.578419	
3	0	8	-0.808540	1.062325	0.484319	
4	0	8	-0.695000	-1.140060	0.669308	
5	0	8	-1.985670	-0.630080	-0.793900	
6	С	6	-2.235790	0.483441	-0.209900	
7	Н	1	-2.879850	0.493816	0.675224	
8	Н	1	-2.388630	1.335628	-0.882460	
9	С	6	1.238441	0.038144	-0.364900	
10	Н	1	0.852633	0.042021	-1.390200	
11	С	6	2.019675	1.331952	-0.125730	
12	Н	1	2.420512	1.365784	0.889483	
13	Н	1	2.861575	1.391814	-0.814990	
14	Н	1	1.393568	2.209441	-0.271410	
15	С	6	2.095516	-1.20977	-0.165400	
16	Н	1	2.946508	-1.189600	-0.845640	
----	---	---	----------	-----------	-----------	
17	Н	1	2.491764	-1.259400	0.852028	
18	Н	1	1.529469	-2.119480	-0.353550	

 Table S1.31. Optimised parameters of TS9i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	0	8	0.565659	-1.331790	0.187520		
2	С	6	-0.088710	-0.277720	0.466012		
3	С	6	1.112061	1.096477	-0.059830		
4	0	8	2.253277	0.507832	0.255888		
5	0	8	2.421931	-0.594860	-0.445230		
6	Н	1	0.950466	1.995010	0.521237		
7	С	6	-1.372310	0.030825	-0.335560		
8	Н	1	-1.110360	-0.025850	-1.395080		
9	С	6	-2.389730	-1.078880	-0.035560		
10	Н	1	-3.304340	-0.923060	-0.609260		
11	Н	1	-1.981220	-2.055470	-0.288350		
12	Н	1	-2.658840	-1.087300	1.023102		
13	Н	1	0.862590	1.097682	-1.113890		
14	Н	1	-0.160150	-0.007220	1.536244		
15	С	6	-1.955720	1.407802	-0.013760		

16	Н	1	-1.316010	2.228411	-0.340920
17	Н	1	-2.919390	1.537420	-0.506400
18	Н	1	-2.123220	1.519946	1.060030

 Table S1.32. Optimised parameters of TS10i.

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	0	8	-1.407510	1.146612	0.474345		
2	С	6	0.287874	-0.464520	0.694941		
3	С	6	-0.523220	-1.527740	0.419682		
4	0	8	-2.384400	-0.565370	-0.373030		
5	0	8	-1.919900	0.616845	-0.581880		
6	С	6	1.302615	0.075279	-0.277460		
7	Н	1	0.835224	0.089052	-1.268140		
8	Н	1	-1.119490	-1.987070	1.191593		
9	С	6	1.749519	1.495856	0.075313		
10	Н	1	2.223953	1.518584	1.059136		
11	Н	1	2.477185	1.861630	-0.649520		
12	Н	1	0.904641	2.181432	0.092618		
13	Н	1	-0.451900	-2.056520	-0.520690		
14	Н	1	0.335987	-0.101800	1.714496		
15	С	6	2.517550	-0.873630	-0.354830		

16	Н	1	3.242086	-0.498100	-1.078550
17	Н	1	3.016412	-0.944720	0.613310
18	Н	1	2.224322	-1.878720	-0.655680

 Table S1.33. Optimised parameters of Formic acid (P1).

Cartesian coordinate							
Center No.	Atom	Atomic No.	Х	Y	Z		
1	С	6	0.133818	0.361049	0.000043		
2	Н	1	0.042063	1.459768	-0.000079		
3	О	8	1.172698	-0.219860	-0.000014		
4	О	8	-1.056020	-0.278450	-0.000004		
5	Н	1	-1.778430	0.360447	-0.000036		

 Table S1.34. Optimised parameters of Formaldehyde (P2).

Cartesian coordinate							
Center No.	Atom	Atomic No.	Х	Y	Z		
1	0	8	0	0	0.672848		
2	С	6	0	0	-0.526580		
3	Н	1	0	0.938333	-1.111650		
4	Н	1	0	-0.938330	-1.111650		

 Table S1.35. Optimised parameters of Butyric acid (P3).

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	-2.701560	0.012117	0.011388		
2	Н	1	-2.884510	0.753550	0.791053		
3	Н	1	-2.923690	-0.971040	0.429602		
4	Н	1	-3.411050	0.197198	-0.795360		
5	С	6	-1.263410	0.085939	-0.496840		
6	Н	1	-1.114200	-0.645510	-1.293630		
7	Н	1	-1.073110	1.068627	-0.931720		
8	С	6	-0.238980	-0.178430	0.621838		
9	Н	1	-0.399450	-1.167090	1.048624		
10	Н	1	-0.356800	0.566688	1.409621		
11	С	6	1.174187	-0.134040	0.103941		
12	0	8	1.835511	-1.086180	-0.221330		
13	0	8	1.640467	1.136280	0.004468		
14	Н	1	2.533559	1.083236	-0.365260		

 Table S1.36. Optimised parameters of n-Butyraldehyde oxide (P4).

Cartesian coordinate							
Center No.	Atom	Atomic No.	X	Y	Z		
1	С	6	1.567124	0.545660	-0.052030		
2	Н	1	1.553666	1.296743	0.741170		
3	Н	1	1.291162	1.062457	-0.972870		

4	С	6	0.509598	-0.536060	0.250549
5	Н	1	0.797716	-1.062030	1.167840
6	Н	1	0.469732	-1.272710	-0.552030
7	С	6	-0.841430	0.033947	0.451402
8	Н	1	-1.086780	0.742481	1.238881
9	Ο	8	-1.770570	-0.284250	-0.329360
10	0	8	-3.010810	0.261556	-0.142180
11	С	6	2.969855	-0.043880	-0.183050
12	Н	1	3.699437	0.735057	-0.402700
13	Н	1	3.278989	-0.539490	0.738605
14	Н	1	3.016218	-0.778950	-0.987800

 Table S1.37. Optimised parameters of 1-Pentene (P5).

Cartesian coordinate							
Center No.		Atomic No.	X	Y	Z		
1	С	6	-2.426330	-0.194980	-0.076810		
2	Н	1	-2.688810	-0.242160	0.981859		
3	Н	1	-3.209220	0.366864	-0.587340		
4	Н	1	-2.444250	-1.214910	-0.465580		
5	С	6	-1.056160	0.449697	-0.278870		
6	Н	1	-1.076420	1.478412	0.091623		
7	Н	1	-0.830680	0.515568	-1.345970		
8	С	6	0.075345	-0.316770	0.423379		

9	Н	1	-0.168070	-0.392190	1.489341
10	Н	1	0.119461	-1.339920	0.041378
11	С	6	1.415376	0.337267	0.270244
12	Н	1	1.494200	1.349787	0.658226
13	С	6	2.480470	-0.212330	-0.300600
14	Н	1	2.452604	-1.217880	-0.703760
15	Н	1	3.418959	0.319082	-0.383870

 Table S1.38. Optimised parameters of Isobutyric acid (P6).

Cartesian coordinate										
Center No.	Atom	Atomic No.	X	Y	Z					
1	0	8	-1.110880	-1.130300	0.676780					
2	С	6	-0.782050	-0.191820	-0.001610					
3	С	6	0.635017	0.177794	-0.391190					
4	С	6	1.560690	-1.034230	-0.314290					
5	Н	1	2.569508	-0.752720	-0.616540					
6	Н	1	1.601704	-1.427310	0.700578					
7	Н	1	1.221058	-1.838400	-0.966040					
8	С	6	1.119688	1.331581	0.506948					
9	Н	1	1.155329	1.018167	1.551053					
10	Н	1	2.124762	1.632135	0.211653					
11	Н	1	0.467636	2.200092	0.429338					
12	Н	1	0.592023	0.547253	-1.418000					

13	0	8	-1.685990	0.693516	-0.491410
14	Н	1	-2.55713	0.415118	-0.174170

 Table S1.39. Optimised parameters of Isobutyraldehyde oxide (P7).

Cartesian coordinate										
Center No.	Atom	Atomic No.	X	Y	Z					
1	С	6	0.450491	-0.474100	-0.345380					
2	0	8	1.339479	0.279480	0.113287					
3	С	6	-0.965460	-0.022110	-0.417050					
4	Н	1	-1.232440	-0.072630	-1.481490					
5	С	6	-1.175200	1.408474	0.078245					
6	Н	1	-0.558350 2.11837:		-0.470060					
7	Н	1	-2.219240	1.692108	-0.048060					
8	Н	1	-0.924350	1.497707	1.135006					
9	С	6	-1.864290	-1.038270	0.317667					
10	Н	1	-2.911820	-0.781520	0.164396					
11	Н	1	-1.709870	-2.053750	-0.047590					
12	Н	1	-1.663840	-1.027550	1.389137					
13	Н	1	0.769327	-1.460700	-0.674350					
14	О	8	2.632688	-0.173980	0.165724					

 Table S1.40. Optimised parameters of Isopentene (P8).

	Cartesian coordinate										
Center No.	Atom	Atomic No.	X	Y	Z						
1	С	6	0.949812	0.000158	0.413180						
2	С	6	2.146063 0.0000		-0.161590						
3	С	6	-0.369710	-0.000051	-0.307990						
4	Н	1	-0.165560	-0.000018	-1.382650						
5	Н	1	3.057453	-0.000110	0.421108						
6	С	6	-1.175000	-1.264660	0.028318						
7	Н	1	-1.388660	-1.317170	1.098271						
8	Н	1	-2.129410	-1.269320	-0.500710						
9	Н	1	-0.628360	-2.166500	-0.247190						
10	Н	1	2.257532	-0.000150	-1.239620						
11	Н	1	0.887496	0.000120	1.499512						
12	С	6	-1.175130	1.264621	0.028275						
13	Н	1	-2.129430	1.269264	-0.50092						
14	Н	1	-1.388910	1.316919	1.098204						
15	Н	1	-0.628410	2.166427	-0.24714						

 Table S1.41. Optimised parameters of Ozone.

Cartesian coordinate									
Center No.	Atom	Atomic No.	Х	Y	Z				
1	0	8	0	0	0.427990				
2	0	8	0	1.076416	-0.214000				

3	0	8	0	-1.076420	-0.214000

Table S2. Vibrational frequencies (cm⁻¹) for the reactants, transition states, intermediates at B3LYP/6-311+G(2df,2p) level of theory:

Table S2.1. Normal mode frequencies of CH2OO, nBD, IM1n, SOZ-n, IM2n, IM3n, IM4n andPOZ-n.

CH ₂ OO	nBD	IM1n	SOZ-n	IM2n	IM3n	IM4n	POZ-n
530.15	81.53	32.68	69.26	71.79	17.39	69.38	65.29
674.69	172.88	47.77	84.09	79.76	62.28	84.26	92.71
925.57	192.43	66.01	102.05	94.34	84.67	102.09	114.84
949.84	245.31	96.23	203.64	194.17	86.19	203.73	169.39
1244.87	344.68	122.63	244.94	226.27	194.58	244.96	246.15
1403.5	669.28	158.64	309.49	244.95	242.97	309.51	307.77
1543.3	693.02	193.41	317.52	286.25	287.28	317.55	359.32
3121.96	793.18	215.14	341.32	311.52	314.29	341.36	400.89
3272.47	852.81	244.36	657.52	372.47	373.61	657.53	512.70
	952.93	254.19	700.12	501.11	413.50	700.12	695.03
	962.85	346.91	737.95	560.98	560.83	737.93	713.71
	1044.39	527.04	746.95	665.71	645.80	746.97	739.26
	1133.81	674.74	834.65	744.87	754.91	834.65	765.85
	1157.19	678.63	847.45	776.64	759.69	847.47	844.77

1257.20	698.36	885.73	839.58	845.12	885.83	891.68
1318.86	799.80	936.32	864.86	899.99	936.31	906.55
1326.10	855.16	948.46	915.33	911.28	948.41	922.66
1397.20	897.69	997.22	975.21	976.09	997.16	969.61
1417.87	954.18	1036.23	1039.88	1038.95	1036.20	1005.44
1423.09	967.14	1068.42	1049.23	1053.50	1068.27	1034.66
1452.29	992.93	1129.55	1103.85	1085.80	1129.52	1043.96
1496.56	1045.05	1133.42	1123.95	1112.10	1133.42	1075.56
1506.11	1134.88	1147.00	1163.09	1113.27	1146.95	1131.97
1513.25	1150.60	1162.15	1219.38	1214.47	1162.10	1171.24
1802.75	1243.81	1218.85	1252.19	1274.51	1218.79	1236.31
2864.76	1259.55	1270.42	1280.54	1291.75	1270.42	1269.79
2992.61	1318.91	1325.79	1335.47	1315.63	1325.80	1278.05
3009.32	1326.13	1330.73	1344.34	1333.31	1330.72	1326.98
3024.57	1396.99	1354.26	1391.92	1380.53	1354.17	1338.05
3043.84	1417.09	1393.55	1399.12	1396.09	1393.53	1348.94
3063.07	1419.47	1405.78	1411.81	1420.26	1405.74	1385.20
3088.27	1423.90	1415.77	1422.04	1439.91	1415.74	1404.61
3092.74	1452.70	1425.08	1457.47	1486.85	1425.06	1421.60
	1496.39	1478.32	1480.48	1500.63	1478.32	1478.77
	1505.58	1501.72	1501.38	1504.00	1501.71	1499.30
	1512.40	1505.63	1505.55	1510.93	1505.63	1505.48
	1567.10	1517.77	1517.49	1515.12	1517.76	1508.01
	1754.78	1529.05	1762.43	1803.07	1529.07	1514.47

2929.57	3004.36	3023.71	3027.84	3004.70	3003.99
2988.46	3011.92	3029.93	3032.63	3011.87	3014.06
3024.58	3024.57	3039.48	3055.33	3024.57	3025.98
3038.44	3031.53	3044.08	3059.26	3031.55	3036.92
3044.43	3045.23	3049.46	3060.50	3045.22	3041.50
3063.45	3054.97	3059.81	3088.52	3054.97	3056.64
3087.46	3069.82	3071.61	3094.04	3069.81	3066.02
3090.37	3091.96	3091.50	3108.96	3091.94	3086.22
3136.41	3092.72	3094.92	3154.83	3092.70	3092.75
3281.49	3092.95	3774.29	3824.02	3092.95	3117.52

Table S2.2. Normal mode frequencies of TS1n, TS2n, TS3n, TS4n, TS5n, TS6n, TS7n, TS8n,TS9n and TS10n.

TS1n	TS2n	TS3n	TS4n	TS5n	TS6n	TS7n	TS8n	TS9n	TS10n
253.83i	959.32i	972.82i	808.44i	999.95i	130.97i	767.66i	1182.47i	420.90i	172.07i
35.72	70.31	63.20	72.69	26.43	55.36	70.23	60.67	62.62	51.84
73.74	101.32	73.65	83.59	74.15	78.58	76.79	76.86	91.32	63.01
78.41	118.36	99.39	137.50	82.25	88.09	105.69	122.72	111.45	89.30
185.31	180.68	207.63	220.31	176.41	147.75	169.15	178.77	146.26	149.92
191.80	232.59	224.47	240.45	216.78	176.99	219.63	243.60	244.96	188.18
246.87	244.57	251.56	288.34	243.70	243.76	245.81	271.68	289.67	213.73
280.03	300.72	264.05	308.79	304.75	322.24	277.38	291.58	309.47	239.86
354.73	415.12	322.58	343.83	345.71	342.34	314.84	330.95	364.53	357.83

406.48	472.67	391.47	364.01	487.07	355.88	374.87	386.85	467.94	397.16
449.44	510.28	454.39	545.36	546.31	399.68	461.19	446.52	509.56	451.21
548.24	630.38	648.07	629.67	577.95	487.65	524.60	573.18	565.52	477.07
679.33	711.33	700.93	725.14	747.27	670.53	669.79	622.81	602.14	653.41
733.96	758.01	751.34	750.78	760.96	686.83	712.13	742.15	756.79	742.75
759.25	810.79	834.54	786.85	804.04	725.33	744.83	775.30	865.23	753.07
827.33	862.74	857.31	820.47	894.56	838.77	848.03	885.68	889.29	873.40
862.40	896.29	874.87	880.32	908.18	866.11	864.14	894.43	904.78	880.06
911.31	925.13	981.98	912.50	948.01	947.97	881.29	910.63	948.65	953.00
965.08	946.75	1044.25	942.08	976.80	961.92	973.84	935.19	1002.08	957.02
980.07	1007.65	1049.65	1000.17	1039.32	1005.87	1012.40	991.39	1041.52	992.66
1039.14	1032.03	1069.62	1033.93	1111.35	1047.13	1044.77	1045.17	1069.20	1044.26
1048.83	1067.45	1133.52	1058.54	1115.95	1119.32	1112.99	1111.48	1094.46	1075.12
1132.63	1110.25	1170.38	1109.53	1222.97	1141.84	1126.18	1126.19	1130.97	1099.77
1137.00	1134.79	1259.97	1125.60	1252.97	1156.45	1135.12	1171.78	1171.81	1113.65
1228.61	1177.29	1311.73	1138.71	1287.99	1244.08	1211.81	1208.37	1235.56	1122.52
1260.05	1187.14	1329.48	1231.11	1308.01	1257.01	1258.64	1245.27	1262.14	1182.70
1315.30	1244.24	1339.68	1255.06	1314.26	1327.88	1310.85	1261.11	1268.47	1260.70
1327.54	1254.66	1373.40	1275.13	1329.39	1330.36	1322.71	1309.74	1306.07	1298.18
1393.72	1273.67	1378.15	1309.10	1381.46	1359.77	1329.34	1330.54	1329.38	1301.70
1396.07	1291.07	1401.53	1316.84	1418.65	1412.81	1364.13	1339.85	1359.04	1327.82
1402.54	1323.39	1416.69	1344.69	1421.20	1424.37	1389.76	1384.18	1381.93	1389.63
1420.36	1377.48	1422.56	1366.45	1445.06	1442.88	1398.27	1412.66	1418.81	1420.61
1462.91	1383.53	1453.37	1387.31	1490.44	1485.53	1421.42	1422.88	1459.76	1456.67

1500.70	1418.27	1499.77	1418.37	1500.98	1498.84	1460.38	1480.42	1477.25	1466.47
1505.32	1480.98	1506.19	1476.28	1504.22	1506.82	1499.57	1500.04	1484.30	1499.79
1515.01	1500.29	1514.74	1499.52	1515.00	1513.45	1505.71	1503.45	1498.25	1505.33
1547.70	1502.63	1569.23	1501.12	1606.58	1553.14	1512.73	1505.35	1503.99	1514.03
1599.58	1515.65	1635.75	1513.60	1648.58	1646.26	1526.98	1516.39	1512.75	1586.38
2980.77	2094.63	1835.57	2122.47	1776.34	2966.84	2413.37	2185.51	2896.76	2985.08
2997.05	2840.93	2991.68	2850.07	2994.68	2995.16	2901.78	2981.02	3008.56	3009.94
3024.42	2963.83	3010.89	2877.97	3028.81	3028.64	3000.03	3018.92	3020.59	3022.71
3036.35	3025.88	3025.64	3026.72	3034.60	3032.70	3025.97	3027.91	3026.56	3026.50
3053.02	3029.32	3048.06	3040.63	3052.76	3035.82	3047.16	3032.55	3054.06	3060.45
3066.56	3050.69	3059.92	3058.05	3064.39	3048.15	3057.68	3044.36	3071.33	3085.97
3087.82	3068.90	3067.62	3065.75	3084.27	3070.44	3065.89	3062.32	3089.08	3093.19
3090.07	3090.18	3075.05	3089.09	3090.16	3094.66	3079.04	3081.35	3092.49	3156.44
3146.16	3094.81	3094.09	3091.99	3096.33	3100.40	3093.38	3094.21	3107.92	3166.24
3287.25	3107.20	3096.85	3109.74	3109.39	3200.35	3096.58	3096.40	3227.92	3251.20

Table S2.3. Normal mode frequencies of iBD, IM1i, SOZ-I, IM2i, IM3i, IM4i and POZ-i

iBD	IM1i	SOZ-i	IM2i	IM3i	IM4i	POZ-i
95.52	29.33	75.30	80.28	26.73	39.69	76.34
201.05	44.99	99.13	89.99	66.23	84.46	99.93
228.12	73.99	196.58	177.42	83.71	92.62	196.93
270.88	90.37	208.23	214.34	195.09	129.94	219.57
342.93	143.73	240.85	234.99	215.12	191.87	238.65
400.82	184.29	258.69	244.65	243.00	210.14	313.24

639.25	205.36	330.81	263.25	252.17	220.35	349.72
792.18	213.97	360.74	296.15	309.12	264.66	381.64
914.63	232.70	446.41	358.94	343.70	298.99	445.50
926.80	276.81	593.50	460.83	378.17	320.68	492.13
946.21	352.29	707.92	515.82	509.46	359.90	689.23
974.70	417.51	746.51	559.22	535.35	453.37	718.75
1129.43	526.83	823.94	618.64	644.87	464.00	766.38
1154.64	648.01	883.30	771.23	775.34	539.12	820.08
1201.82	678.75	915.82	840.84	807.66	602.63	895.36
1305.29	796.65	934.15	863.60	900.36	832.29	920.86
1355.26	897.26	947.87	939.08	944.04	926.58	938.09
1407.79	913.71	972.44	960.99	962.12	934.47	961.92
1412.44	931.60	992.36	973.83	973.72	945.70	984.47
1434.81	948.55	1063.77	1048.65	1045.60	976.44	994.69
1490.31	974.37	1091.44	1109.34	1063.81	980.03	1026.32
1494.29	992.49	1137.97	1131.85	1111.38	1110.09	1033.09
1508.36	1123.21	1148.70	1136.37	1116.74	1145.93	1134.56
1512.73	1148.74	1161.19	1206.52	1190.94	1154.73	1184.64
1801.51	1199.84	1210.65	1218.95	1255.16	1208.23	1195.50
2856.51	1243.88	1220.20	1269.82	1289.68	1254.27	1247.13
2975.58	1305.12	1327.90	1349.98	1351.60	1294.27	1294.27
3030.96	1366.72	1346.18	1368.46	1353.35	1349.59	1318.67
3042.00	1404.83	1371.14	1394.23	1396.04	1377.87	1349.26
3091.28	1413.47	1397.37	1400.20	1403.78	1414.12	1357.93

2100.10	1 4 1 7 7 1	1407 (1	1407 57	1404 10	1422 55	1206.15
3100.18	1417.51	1407.61	1407.57	1424.18	1433.55	1396.15
3103.59	1434.31	1410.66	1423.30	1441.32	1492.28	1408.65
3112.83	1491.49	1433.61	1458.29	1494.40	1494.80	1430.34
	1493.90	1494.57	1495.46	1496.46	1506.74	1493.79
	1508.02	1499.26	1499.18	1507.17	1513.61	1497.90
	1513.22	1508.42	1509.36	1510.88	1515.36	1505.00
	1567.05	1520.85	1522.20	1517.97	1566.27	1510.84
	1754.30	1529.43	1762.89	1799.41	1708.23	1518.08
	2922.94	3000.58	3025.51	3035.53	2955.10	3013.54
	3023.70	3012.01	3031.93	3038.22	2961.18	3023.87
	3029.53	3019.73	3039.18	3061.28	3018.79	3028.34
	3040.21	3034.00	3040.67	3065.30	3046.07	3039.94
	3090.32	3042.32	3042.95	3096.41	3048.58	3047.67
	3097.78	3093.72	3091.27	3098.90	3110.14	3081.42
	3101.58	3094.74	3098.05	3106.43	3112.48	3086.41
	3108.20	3098.80	3104.35	3113.41	3117.37	3096.44
	3136.46	3104.28	3119.13	3155.67	3128.65	3114.36
	3281.50	3115.51	3775.97	3824.50	3179.23	3121.53

Note: 'i' stands for imaginary frequency

Table S2.4. Normal mode frequencies of TS1i, TS2i, TS3i, TS4i, TS5i, TS6i, TS7i, TS8i, TS9i

 and TS10i.

TS1i	TS2i	TS3i	TS4i	TS5i	TS6i	TS7i	TS8i	TS9i	TS10i
239.33i	936.73i	962.51i	824.45i	989.93i	138.91i	755.32i	1192.22i	428.76i	181.07i
40.06	96.20	66.00	(9(1	20.20	17 16	71.05	52.22	(0.71	11 10
40.96	80.29	00.08	08.01	20.39	47.40	/1.05	32.33	09./1	44.48

63.18	99.68	99.38	172.82	85.57	83.99	111.84	112.00	84.71	75.37
140.28	180.08	155.49	186.01	168.10	128.25	142.01	193.11	183.74	134.00
212.18	205.89	205.13	214.68	211.08	191.61	198.98	211.47	218.55	191.84
231.63	214.67	219.32	239.18	216.55	214.99	212.39	229.98	247.69	225.56
243.49	231.26	262.52	259.02	251.28	231.43	237.92	269.66	292.52	246.65
284.67	314.80	268.13	298.27	265.07	287.33	264.50	315.87	314.98	263.96
299.19	359.94	334.54	327.76	297.42	333.08	333.88	325.49	356.90	339.30
382.19	460.55	367.80	372.54	413.47	366.06	363.17	368.59	410.73	370.69
404.62	476.93	414.72	466.70	530.66	420.80	432.13	401.90	474.98	419.84
514.94	508.45	481.43	537.39	545.45	466.83	481.28	493.42	521.08	491.06
562.81	632.37	642.49	637.08	585.02	508.09	531.52	548.18	574.16	497.56
652.89	728.23	697.39	649.67	761.84	604.14	622.71	619.72	600.77	722.26
756.74	776.25	812.70	781.12	799.48	698.76	710.51	787.18	823.50	745.64
805.27	824.47	849.34	833.41	860.98	836.93	813.24	826.50	889.64	802.97
908.83	879.31	935.97	886.85	929.14	927.29	873.89	893.80	907.12	922.88
919.97	932.54	963.31	939.73	944.93	944.21	935.35	914.04	936.36	939.15
942.16	940.66	977.62	942.40	969.16	949.08	951.43	940.73	969.63	957.09
968.69	958.28	1027.26	957.94	974.71	978.55	973.26	972.35	978.55	968.21
983.01	1000.20	1069.37	981.19	1113.36	983.53	994.63	997.52	1068.33	997.67
1043.45	1055.36	1151.06	1042.56	1115.11	1106.23	1107.61	1116.17	1092.36	1016.80
1111.41	1089.21	1164.59	1108.27	1193.73	1147.68	1123.16	1134.45	1135.57	1097.22
1136.19	1140.99	1212.66	1132.40	1222.77	1160.03	1146.83	1168.91	1171.84	1111.68
1198.36	1157.48	1304.94	1138.60	1286.80	1209.59	1209.63	1192.83	1188.70	1119.61
1229.33	1188.97	1327.96	1195.00	1311.10	1243.01	1212.17	1208.31	1241.70	1186.10

1318.50	1207.13	1349.21	1236.85	1340.17	1295.99	1318.02	1263.73	1269.71	1209.01
1369.35	1262.30	1373.80	1276.25	1347.71	1345.64	1322.45	1315.48	1312.24	1295.82
1397.24	1280.62	1379.53	1314.98	1403.49	1371.50	1335.62	1334.53	1346.06	1320.96
1398.26	1311.24	1406.14	1345.53	1411.07	1412.80	1369.65	1338.70	1355.53	1337.71
1403.07	1365.27	1407.88	1349.41	1420.36	1431.22	1396.13	1393.37	1404.16	1402.39
1420.64	1386.28	1431.10	1365.08	1458.29	1482.54	1406.00	1413.02	1424.00	1422.56
1492.67	1403.48	1493.72	1402.21	1493.61	1492.59	1427.31	1431.80	1455.39	1455.43
1496.27	1421.80	1498.76	1424.79	1496.25	1495.88	1491.23	1494.51	1485.18	1494.01
1506.54	1483.95	1506.96	1486.46	1506.69	1506.69	1496.32	1497.40	1492.89	1494.34
1518.56	1495.61	1517.77	1496.57	1521.67	1513.98	1503.05	1501.53	1495.44	1505.98
1548.23	1499.07	1564.62	1501.05	1607.17	1543.46	1511.21	1506.72	1511.16	1517.52
1599.82	1515.61	1635.66	1514.77	1649.60	1641.40	1519.52	1517.65	1515.04	1581.09
2983.19	2096.75	1834.78	2125.48	1772.67	2957.65	2415.19	2167.67	2881.98	2998.75
3028.82	2846.75	2963.35	2850.91	2994.35	2966.53	2900.95	2978.85	3024.87	3026.90
3036.45	2957.88	3009.81	2877.05	3038.32	3031.89	2972.91	3012.73	3026.08	3031.36
3039.11	3032.96	3039.34	3035.25	3040.94	3046.17	3038.83	3028.01	3032.46	3085.21
3091.32	3038.66	3046.35	3039.18	3064.58	3048.87	3045.41	3035.81	3081.50	3091.95
3095.25	3054.50	3060.04	3062.99	3083.81	3108.05	3052.81	3040.58	3086.62	3102.64
3099.64	3089.20	3098.01	3094.40	3100.19	3113.05	3095.39	3088.99	3094.17	3118.09
3108.15	3093.08	3107.09	3100.22	3103.41	3118.97	3105.63	3094.87	3109.24	3156.81
3145.92	3112.82	3119.84	3111.18	3110.50	3132.11	3121.16	3122.60	3116.27	3160.91
3287.33	3118.97	3124.65	3118.86	3118.18	3194.20	3122.88	3122.83	3233.13	3251.31

Table S2.5. Normal mode frequencies of formic acid (P1), formaldehyde (P2), butyric acid
(P3), n-butyraldehyde oxide (P4), 1-pentene (P5), isobutyric acid (P6), isobutyraldehyde oxide
(P7), isopentane (P8) and ozone.

Formic	Formal	Butyric	N-butyral	1-Pentene	Iso	Iso	Iso	Ozone
acid (P1)	dehyde	acid	dehyde	(P5)	butyric	butyral	pentene	
	(P2)	(P3)	oxide		acid	dehyde	(P8)	
			(P4)		(P6)	oxide		
						(P7)		
533.21	1200.41	26.78	66.43	96.90	36.10	86.34	98.52	748.52
661.12	1264.24	90.41	89.50	102.48	117.67	189.99	222.98	1209.08
1035.86	1530.74	185.37	169.52	230.23	153.12	196.01	239.66	1259.78
1105.50	1817.03	243.32	244.39	245.84	207.18	222.18	312.84	
1269.04	2887.10	329.09	301.10	383.79	214.76	258.55	321.71	
1415.83	2942.95	431.17	337.76	436.94	330.12	334.82	346.77	
1859.95		581.94	384.68	645.22	444.36	437.10	504.69	
2963.13		621.28	580.64	751.22	580.91	444.38	697.29	
		742.05	749.03	878.38	658.98	603.68	801.11	
		758.33	848.83	889.64	815.43	826.62	930.62	
		876.66	882.22	952.44	862.74	928.33	933.02	
		896.64	944.87	953.16	979.70	930.04	952.89	
		914.43	950.50	1026.50	1030.29	941.85	963.87	
		1038.46	1021.05	1035.81	1105.09	971.69	1008.29	
		1073.79	1042.62	1051.84	1110.20	975.38	1035.74	

	1113.04	1106.10	1114.61	1173.08	1109.32	1115.19	
	1199.74	1178.44	1198.79	1199.19	1140.51	1185.29	
	1261.42	1259.25	1268.37	1216.96	1205.36	1218.60	
	1300.73	1295.75	1303.75	1281.05	1301.87	1322.50	
	1327.37	1328.56	1324.26	1382.27	1343.20	1338.20	
	1363.06	1358.58	1335.44	1421.73	1374.90	1343.06	
	1382.57	1381.64	1381.55	1464.89	1411.62	1400.71	
	1420.69	1422.48	1417.88	1472.34	1433.11	1420.11	
<u> </u>	1488.05	1474.81	1458.82	1483.01	1492.34	1462.08	
	1500.82	1498.66	1486.83	1495.43	1496.15	1492.97	
	1504.13	1504.58	1498.38	1500.38	1508.06	1493.71	
	1515.55	1513.25	1503.86	1504.46	1513.87	1505.65	
	1807.82	1566.52	1513.82	1808.96	1565.84	1514.27	
	3028.32	3003.84	1702.76	3036.86	2971.87	1700.84	
	3034.14	3030.09	2995.02	3042.72	3037.40	3013.31	
	3055.60	3033.50	3017.14	3046.41	3047.15	3021.05	
	3061.38	3059.48	3024.74	3062.63	3103.02	3025.40	
	3089.59	3087.02	3034.44	3107.83	3107.66	3077.99	
	3094.98	3096.83	3053.30	3114.02	3111.57	3084.37	
	3111.88	3101.78	3083.82	3116.25	3117.46	3095.17	
	3753.82	3136.89	3089.06	3153.19	3131.44	3096.57	
			3114.67			3105.70	
			3129.47			3128.69	
			3209.22			3208.21	

Table S3. Theoretically calculated relative zero-point energy correction (ΔE_{ZPE}), reaction energy (ΔE^0_r), change in reaction enthalpy (ΔH^0), Gibbs' free energy change (ΔG^0), entropy (S⁰) and zero-point energy corrected activation barrier heights ($\Delta E_{r,ZPE}$) for all the stationary points at CCSD(T)-F12/cc-pVTZ-F12//B3LYP/6-311+G(2df,2p).

$(CH_2OO + nBD)$								
	B3LYP/6-31	1+G(2df,2p)			CCSD(T)-F12/cc-pVTZ-F12			
	ΔE_{ZPE}	ΔH^0	ΔG^0	S ⁰	$\Delta E^{0}_{r}{}^{a}$	$\Delta E_{r, ZPE}^{b}$		
Stationary Points	kcal mol ⁻¹	kcal mol-1	kcal mol ⁻¹	cal K ⁻¹ mol ⁻¹	kcal mol ⁻¹	kcal mol ⁻¹		
$CH_2OO + nBD$		0	0	137.05	0	0		
TS1n	2.17	-2.40	9.94	95.66	-8.49	-6.32		
TS2n	-0.31	-1.02	12.55	91.52	-12.12	-12.43		
TS3n	1.62	-104.82	-91.80	93.36	-111.34	-109.72		
TS4n	-0.44	-1.65	11.97	91.37	-12.37	-12.81		
TS5n	1.88	-103.82	-91.29	95.00	-110.88	-109.00		
TS6n	1.99	-6.43	5.95	95.51	-10.93	-8.95		
TS7n	0.29	-4.52	8.36	93.86	-9.19	-8.90		
TS8n	0.27	-4.95	8.15	93.10	-10.26	-10.00		
TS9n	2.40	24.18	37.49	92.41	15.53	17.94		
TS10n	1.28	61.45	74.08	94.69	55.00	56.28		
IM1n	1.26	-4.25	5.29	105.02	-9.50	-8.24		
SOZ-n	5.41	-40.80	-26.88	90.36	-56.48	-51.08		
IM2n	5.31	-117.63	-104.61	93.36	-132.68	-127.37		
IM3n	5.25	-117.40	-106.11	99.19	-131.06	-125.81		
IM4n	1.68	-6.21	4.60	100.79	-10.75	-9.07		
POZ-n	4.55	7.16	21.02	90.57	-6.17	-1.62		
Formic acnid +	1 40	-109 47	-109.45	136.98	-114 16	-112 76		
nBD	1.10	109.17	107.15	150.90	111.10	112.70		
Formaldehyde +	1.16	-110.64	-110 52	136.65	-117.26	-116 10		
Butyric acid				100,000				
Formaldehyde +	-0.51	0.62	0.95	135.93	0.47	-0.05		

Butyraldehyde oxide						
Ozone + 1-pentene	0.15	60.84	61.33	135.40	54.09	54.24
	<u> </u>	(CH ₂ C	O + nBD)		I	
	B3LYP/6-31	1+G(2df,2p)			CCSD(T)-F12	2/cc-pVTZ-F12
Stationary Points	ΔE_{ZPE}	ΔH^0	ΔG^0 kcal	S ⁰	$\Delta E^{0 a}_{r}$	$\Delta E_{r,ZPE}{}^{b}$
ý	kcal mol ⁻¹	kcal mol ⁻¹	mol ⁻¹	cal K ⁻¹ mol ⁻¹	kcal mol ⁻¹	kcal mol ⁻¹
CH ₂ OO + iBD		0	0	136.65	0	0
TS1i	2.14	-2.38	10.15	94.61	-7.95	-5.80
TS2i	-0.58	-1.65	12.02	90.80	-11.73	-12.30
TS3i	1.51	-104.82	-91.56	92.19	-110.91	-109.39
TS4i	-0.60	-1.99	11.84	90.27	-12.06	-12.66
TS5i	1.77	-103.75	-91.13	94.33	-110.19	-108.42
TS6i	2.00	-6.30	6.26	94.53	-10.50	-8.50
TS7i	0.15	-4.79	8.30	92.73	-8.99	-8.84
TS8i	0.27	-5.15	8.35	91.37	-10.44	-10.17
TS9i	2.27	24.81	38.39	91.11	16.47	18.73
TS10i	1.47	61.80	74.31	94.69	56.78	58.25
IM1i	1.24	-4.11	5.35	104.895	-8.71	-7.47
SOZ-i	5.30	-41.01	-26.85	89.157	-56.19	-50.89
IM2i	5.18	-117.77	-104.49	92.119	-132.30	-127.11
IM3i	5.16	-117.08	-105.33	97.25	-130.16	-125.00
IM4i	1.66	-6.17	4.78	99.94	-10.28	-8.62
POZ-i	4.49	7.46	21.62	89.16	-5.65	-1.17
Formic acid +						
Isobutyraldehyde	1.40	-109.47	-109.45	136.58	-114.16	-112.76
Formaldehyde +						
Isobutyric_acid	1.04	-110.97	-110.43	134.84	-116.90	-115.87
Formaldehyde +						
Isobutyraldehyde_oxide	-0.58	0.61	1.21	134.64	1.20	0.62
Ozone + Isopentene	0.05	60.65	61.27	134.55	54.68	54.73

^a ΔE^0_r = Energy change at CCSD(T)-F12/cc-pVTZ-F12

 $^{b}\Delta E_{r,\,ZPE}\!=\!\Delta E^{0}_{r}+\Delta E_{ZPE}$

Table S4. T1-Diagnostics values of reactants, reactive complexes (IM), transition states (TS) and products obtained at CCSD(T)-F12/cc-pVTZ-F12 level of theory.

Species	T1-Diagnostic value	Species	T1-Diagnostic value
CH ₂ OO	0.043112131	iBD	0.012731293
nBD	0.012623929	IM1i	0.027224446
IM1n	0.027157005	SOZ-i	0.012617156
SOZ-n	0.012549977	IM2i	0.013609582
IM2n	0.013547092	IM3i	0.013325027
IM3n	0.013311760	IM4i	0.024923300
IM4	0.024748782	POZ-i	0.014289088
POZ-n	0.014291561	TS1i	0.026150244
TS1n	0.026104868	TS2i	0.023171854
TS2n	0.024182981	TS3i	0.016862784
TS3n	0.016796795	TS4i	0.028025537
TS4n	0.027074759	TS5i	0.016234474
TS5n	0.016184984	TS6i	0.024417166
TS6n	0.024343955	TS7i	0.032212839
TS7n	0.032011717	TS8i	0.027642102
TS8n	0.027464283	TS9i	0.016919572
TS9n	0.017132855	TS10i	0.018328136
TS10n	0.017980666	Isobutyric acid (P6)	0.013359081
Formic acid (P1)	0.016366012	Isobutyraldehyde	0.029453086

		oxide (P7)	
Formaldehyde (P2	0.015418823	Isopentene (P8)	0.009874978
Butyric acid (P3)	0.013310703	Ozone	0.026341348
N-butyraldehyde			
	0.030034881		
oxide (P4)			
1-Pentene (P5)	0.009880719		

Figure S2. Intrinsic Reaction Coordinate (IRC) plots for $CH_2OO + nBD$ and $CH_2OO + iBD$ obtained at B3LYP/6-311+G(2df,2p) level of theory. Left side is the reactant and right side is the product well. No fitting was performed.

Section S2: MESMER Simulation:

Master equation (ME) simulation was performed using MESMER code (6.1), in which the Rice-Ramsperger-Kassel-Marcus (RRKM) theory was employed to treat the consecutive reaction steps.^{1,2} ME simulations were performed in lot of studies to determine the temperature and pressure dependent kinetics of CH₂OO reactions and the product distribution, in recent past.³⁻⁵ This simulation involves the distribution of thermal energies among the energy grains for individual states along the PES. The molecular collision enables the energy transfer among these energy grains. The equation for this energy transfer process was given by,

$$\frac{d}{dt}p = Mp \tag{ES1}$$

where, p is the population vector of the grains and M is a matrix for the energy transfer rates between grains. For bimolecular reaction in pseudo-1st order condition, p can be expressed as time population of the reactant which is not in excess concentration in the reaction mixture. Equation ES1 is a standard eigenvalue problem, solving which by diagonalising matrix M, one gets corresponding set of eigen solutions. The Bartis-Widom⁶ method is used by the MESMER code to calculate the phenomenological rate coefficients for the consecutive reaction steps using these set of eigen values.^{7,8}

Exponential down model was employed in order to describe the collisional energy transfer process as per the equation,

$$\langle \Delta E \rangle_{down, T} = \langle \Delta E \rangle_{down, 298 K} \left(\frac{T}{300} \right)^n \tag{ES2}$$

where, $\langle \Delta E \rangle_{down,T}$ is the downward energy transfer due to the collision of the reactants to the bat gas molecules, $\langle \Delta E \rangle_{down,298K}$ is the standard value at 298 K for a specific bath gas, *n* is a constant specific to each bath gas. The values of the latter two constants for N₂ were 200 cm⁻¹ and 0.85.^{9,10} The L-J parameters for the bath gas (N₂) was set to be default as in the MESMER code, and for the intermediates, were calculated using following equations¹¹,

$$\sigma = 2.44 \left(\frac{T_c}{p_c}\right)^{\frac{1}{3}}$$
(ES3)

$$\epsilon = 0.77 kT_c$$
 (ES4)

The critical constants for temperature and pressure in Equation ES4 were calculated using Joback's group contribution method for the intermediates.¹² The σ and ϵ values calculated are given in Table S5.

Table S5.	The L-J	parameters	calculated.
-----------	---------	------------	-------------

Species	σ (in Å)	€ (in kT)	Species	σ (in Å)	ϵ (in kT)
C	$H_2OO + nB$	D	$CH_2OO + iBD$		D

IM1	5.89	454.88	IM1	5.90	459.99
SOZ	5.89	454.88	SOZ	5.90	459.99
IM2	5.88	452.31	IM2	5.88	457.40
IM3	5.95	434.55	IM3	5.99	448.23

The entrance channel for the title reactions is the bimolecular association of the CH_2OO to the C=O group of the nBD and iBD. This association step is a barrierless process, and is treated using Inverse Laplace Transformation (ILT), included in the MESMER code. The Arrhenius parameters used for the ILT method were taken from the liner least-square fit of the experimental data as per Equation ES5.

$$k(T) = A \left(\frac{T}{298K}\right)^n \tag{ES5}$$

The values for A and n were taken to be 2.53×10^{-12} cm³ molecule⁻¹ s⁻¹ and -1.49 respectively for R4 and 2.14×10^{-12} cm³ molecule⁻¹ s⁻¹ and -1.49 respectively for R5. It should be noted that the value n from the fit obtained were 3.16 and 3.62 for R4 and R5 respectively, but MESMER code allows the lowest value of -1.49. Hence the highest possible negative curvature with n = -1.49 was employed the ILT method. Whereas, the excess concentration values for nBD and iBD were 1.13×10^{15} and 1.14×10^{15} molecule cm⁻³ respectively. The MESMER parameters namely "energy above the Top hill" and "Energy grain" were assigned to be 25 kT and 40 cm⁻¹ respectively.

Table S6. Pseudo-1st order rate coefficients at temperatures in the range of 253-318 K for (a) $CH_2OO + nBD$ and (b) $CH_2OO + iBD$ reactions, respectively. Standard deviations are given in 1 σ obtained from the fittings in Figure 1.

(a) $CH_2OO + nBD$							
[nBD]	$k_{pseudo}^{253 K} \pm 2c$	$k_{pseudo}^{268 K} \pm 2$	$k_{pseudo}^{283 K} \pm 2$	$k_{pseudo}^{298 K} \pm 2\sigma$	$k_{pseudo}^{308 K} \pm 2\sigma$	$k_{pseudo}^{318 K} \pm 2\sigma$	
(10 ¹⁵ molecule cm ⁻³)	s ⁻¹	s ⁻¹	s ⁻¹	S ⁻¹	S ⁻¹	S ⁻¹	
0.38	3386.3	3524.0	3328.9	3049.9	2769.8	2451.7	
0.30	± 65.0	± 73.9	± 66.0	± 83.5	± 68.3	± 86.6	
0.76	5370.0	4732.0	5362.5	3805.4	3520.7	3143.7	
0.70	± 216.0	± 227.0	± 68.6	± 76.9	± 71.2	± 59.1	
1 13	6807.5	6173.4	5306.2	4756.3	4288.4	3791.1	
1.15	± 261.0	± 186.0	± 105.5	± 135.0	± 137.0	± 104.0	
1 /9	8282.4	4799.4	6386.2	5852.7	5004.2	4601.7	
1.47	± 357.0	± 305.0	± 192.0	± 111.0	± 104.0	±111.0	
1.85	9765.9	8850.0	7467.5	6753.3	5908.6	5266.2	
1.05	± 532.0	± 153.0	± 369.0	± 207.0	± 144.0	± 137.0	
2 20	11180.0	10003	8884.4	7782.2	6928.4	6106.9	
	± 518.0	± 310.0	± 278.0	± 205.0	± 150.0	± 214.0	

(b) $CH_2OO + iBD$

[iBD] (10 ¹⁵ molecule	$k_{pseudo}^{253 K} \pm 2a$	$k_{pseudo}^{268 K} \pm 2$	$k_{pseudo}^{283 K} \pm 2$	$k_{pseudo}^{298 K} \pm 2\sigma$	$k_{pseudo}^{308 K} \pm 2\sigma$	$k_{pseudo}^{318 K} \pm 2d$
cm ⁻³)	s ⁻¹	s ⁻¹	s ⁻¹	s ⁻¹	s ⁻¹	s ⁻¹
0.20	3146.9	3122.0	3053.3	3020.1	2944.6	2871.4
0.38	± 85.5	± 58.3	± 54.4	± 124.0	± 34.9	± 86.6
0.70	4349.9	4029.1	3881.4	3775.4	3512.1	3348.0
0.76	± 244.0	± 113.0	± 87.4	± 123.0	± 41.9	± 126.0
1.14	5892.6	5193.6	4714.4	4340.2	4135.6	3881.1

	± 314.0.	± 500.0	± 245.0	± 180.0	± 92.1	± 75.6
	7214.8	6239.3	5786.6	5251.5	4855.6	4480.2
1.52	± 358.0	± 361.0	± 448.0	± 180.0	± 80.0	± 120.0
	8691.9	7679.1	6978.4	6213.1	5715.2	5166.4
1.89	± 262.0	± 344.0	± 372.0	± 195.0	± 221.0	± 78.7
	10390.0	9029.9	8042.9	7160.0	6416.3	5946.4
2.26	± 591.0	± 471.0	± 172.0	± 253.0	± 226.0	± 116.0

Figure S3. Sensitivity analysis of k_{exp} on the bimolecular rate coefficients.

Section S3. Thermochemistry:

The change in free energy (ΔG^0), enthalpy (ΔH^0) and entropy (ΔS^0) for all the reaction pathways are given in Table S7. There are identical products formed in different pathways, such as Pathways 1 and 4 and Pathways 2 and 5, which give the same thermodynamic parameters. Highly negative free energies for Pathways 1, 2, 4 and 5 make them thermodynamically favourable over Pathways 3 and 6. Again, only the net change of free energy or enthalpy does not provide a clear picture of the feasibility of the pathways. These pathways contain several consecutive steps, each of which behaves thermodynamically different. The thermodynamic parameters for each consecutive pathway are given in Table S7. It is worth mentioning that there exists an equilibrium between the reactants and the vdW complexes, which is common in reactions associated with loose TSs, as in this case. The formation of vdW complexes, namely IM1n ($\Delta H^0 = -4.25$ kcal mol⁻¹) and IM1i ($\Delta H^0 = -4.11$ kcal mol⁻¹), were found to be exothermic in nature, which governs how the equilibrium changes with the temperature.

 $CH_2OO + nBD$ $CH_2OO + iBD$ ΔG^0 ΔG^0 **Pathways** ΔH^0 TΔS⁰ **Pathways** ΔH^0 TΔS⁰ Pathway Pathway -109.45 -109.47-0.02 -109.45 -109.47-0.02 1&4 1&4 Pathway Pathway -110.52 -110.64 -0.12 -110.43 -110.97 -0.12 2 & 5 2 & 5 Pathway 3 0.95 -0.33 Pathway 3 0.62 1.21 0.61 -0.33 Pathway 6 61.33 60.84 -0.49 Pathway 6 61.27 60.65 -0.49

Table S7. Thermochemical parameters obtained at B3LYP/6-311+G(2df,2p) level, for reactions R4 and R5. All parameters are given in kcal mol⁻¹.

Table S8. Equilibrium constant for the reaction $CH_2OO + nBD \leftrightarrow IM1n$ and $CH_2OO + iBD \leftrightarrow IM1i$ calculated at B3LYP/6-311+G(2df,2p) level of theory.

Temperature (K)	K_{eq}^{nBD} (cm ³ molecule ⁻¹)	^{K^{iBD}_{eq}} (cm ³ molecule ⁻¹)

200	1.63 × 10 ⁻¹⁸	2.55 × 10 ⁻¹⁹
225	1.83 × 10 ⁻¹⁹	3.56 × 10 ⁻²⁰
250	3.19 × 10 ⁻²⁰	7.42 × 10 ⁻²¹
275	8.17 × 10 ⁻²¹	2.20×10^{-21}
298	2.86 × 10 ⁻²¹	8.58 × 10 ⁻²²
325	1.02×10^{-21}	3.44 × 10 ⁻²²
350	4.64 × 10 ⁻²²	1.70×10^{-22}

Table S9. Calculated CVT and CVT/SCT rate coefficients showing the tunnelling effect for $IM1 \rightarrow SOZ$ step in both the reactions.

Tamp	IM1n -	→ SOZ-n	IM1i → SOZ-i		
remp	k ^{CVT} _{uni} (s ⁻¹)	k ^{CVT/SCT} ^{uni} (s ⁻¹)	k ^{CVT} _{uni} (s ⁻¹)	k ^{CVT/SCT} uni (s-1)	
200	2.22×10^{08}	2.41 ×10 ⁰⁹	2.22×10^{08}	2.41 ×10 ⁰⁹	
225	4.34 ×10 ⁰⁸	2.70 ×10 ⁰⁹	4.34 ×10 ⁰⁸	2.70×10^{09}	
250	7.33 ×10 ⁰⁸	3.05 ×10 ⁰⁹	7.33 ×10 ⁰⁸	3.05 ×10 ⁰⁹	
268	9.99 ×10 ⁰⁸	3.34 ×10 ⁰⁹	9.99 ×10 ⁰⁸	3.34 ×10 ⁰⁹	
275	1.11 ×10 ⁰⁹	3.46 ×10 ⁰⁹	1.11 ×10 ⁰⁹	3.46 ×10 ⁰⁹	
298	1.53 ×10 ⁰⁹	3.86 ×10 ⁰⁹	1.53 ×10 ⁰⁹	3.86 ×10 ⁰⁹	
300	1.57 ×10 ⁰⁹	3.90 ×10 ⁰⁹	1.57 ×10 ⁰⁹	3.90 ×10 ⁰⁹	
325	2.08 ×10 ⁰⁹	4.36 ×10 ⁰⁹	2.08 ×10 ⁰⁹	4.36 ×10 ⁰⁹	
350	2.64 ×10 ⁰⁹	4.83 ×10 ⁰⁹	2.64 ×10 ⁰⁹	4.83 ×10 ⁰⁹	

Table S10. Rate coefficients for the reaction of $CH_2OO + nBD$ and $CH_2OO + iBD$ obtained from CVT/SCT and MESMER calculations.

Temperature	$CH_2OO + nBD$		$CH_2OO + iBD$		
(K)	k ^{CVT/SCT – HR} nBD	$k^{MESMER}_{\ \ nBD}$	k ^{CVT/SCT – HR} iBD	$k^{MESMER}_{\ iBD}$	
	(cm ³ molecule ⁻¹ s ⁻¹)				
200	4.80×10^{-10}	4.00×10^{-12}	$6.07 imes 10^{-10}$	3.37 × 10 ⁻¹²	
225	1.04×10^{-10}	3.20×10^{-12}	9.49 × 10 ⁻¹¹	2.60×10^{-12}	
250	3.05 × 10 ⁻¹¹	2.59×10^{-12}	2.23×10^{-11}	2.04×10^{-12}	
275	1.19 × 10 ⁻¹¹	2.12×10^{-12}	7.48×10^{-12}	1.61×10^{-12}	
298	5.62 × 10 ⁻¹²	1.78 × 10 ⁻¹²	3.26×10^{-12}	1.31 × 10 ⁻¹²	
325	2.73×10^{-12}	1.45×10^{-12}	1.47×10^{-12}	1.04×10^{-12}	
350	1.56×10^{-12}	1.22×10^{-12}	8.07×10^{-13}	8.42×10^{-13}	

Section S4. Error Propagation:

The experimental error associated with the measurement of the concentration of the sample (nBD/iBD) was propagated to get the upper and lower limit of the rate coefficients. The maximum possible error due to the flow calibration through the MFCs, in the concentration measurement was assumed to be \pm 10 %. The upper and lower limit of the rate coefficients were determined by plotting the corresponding k_{pseudo} values against the concentration (\pm 10 %) of nBD and iBD, which are given in Table S11.

Table S11. Error (Ek_n) propagation of the reactions $CH_2OO + nBD$ and $CH_2OO + iBD$.

Т	$CH_2OO + nBD$			$CH_2OO + iBD$			
Ĩ	k _{nBD}	$k_{nBD} (\pm 10\%)$	Ek_{nBD} (\pm 10%)	k _{iBD}	$k_{iBD} (\pm 10\%)$	Ek_{iBD} (\pm 10%)	
K			cm ³ molec	cule ⁻¹ s ⁻¹		<u> </u>	

(Concentration -10%)							
253	4.20×10^{-12}	4.66 × 10 ⁻¹²	9.22 × 10 ⁻¹³	3.86 × 10 ⁻¹²	4.28×10^{-12}	4.20×10^{-13}	
268	3.61 × 10 ⁻¹²	4.00×10^{-12}	7.85 × 10 ⁻¹³	3.16 × 10 ⁻¹²	3.51 × 10 ⁻¹²	3.55 × 10 ⁻¹³	
283	2.99×10^{-12}	3.31 × 10 ⁻¹²	6.48 × 10 ⁻¹³	2.65×10^{-12}	2.99×10^{-12}	3.38 × 10 ⁻¹³	
298	2.63×10^{-12}	2.92×10^{-12}	5.75×10^{-13}	2.20×10^{-12}	2.45×10^{-12}	2.47×10^{-13}	
308	2.24×10^{-12}	2.49×10^{-12}	4.99 × 10 ⁻¹³	1.88 × 10 ⁻¹²	2.09×10^{-12}	2.09×10^{-13}	
318	1.99 × 10 ⁻¹²	2.21×10^{-12}	4.40×10^{-13}	1.63 × 10 ⁻¹²	1.81 × 10 ⁻¹²	1.83 × 10 ⁻¹³	
(Concentration +10%)							
253	4.20×10^{-12}	3.82×10^{-12}	7.68×10^{-13}	3.86 × 10 ⁻¹²	3.50×10^{-12}	3.59 × 10 ⁻¹³	
268	3.61 × 10 ⁻¹²	3.28×10^{-12}	6.66 × 10 ⁻¹³	3.16 × 10 ⁻¹²	2.88×10^{-12}	2.84×10^{-13}	
283	2.99×10^{-12}	2.71×10^{-12}	5.53 × 10 ⁻¹³	2.65×10^{-12}	2.44×10^{-12}	2.05×10^{-13}	
298	2.63×10^{-12}	2.39×10^{-12}	4.82×10^{-13}	2.20×10^{-12}	2.00×10^{-12}	1.98 × 10 ⁻¹³	
308	2.24×10^{-12}	2.04×10^{-12}	4.04×10^{-13}	1.88 × 10 ⁻¹²	1.71 × 10 ⁻¹²	1.71×10^{-13}	
318	1.99 × 10 ⁻¹²	1.81 × 10 ⁻¹²	3.61×10^{-13}	1.63 × 10 ⁻¹²	1.48×10^{-12}	1.47×10^{-13}	

These uncertainties are given as error bars in Figure 5 of the manuscript where Figure 2 reflects only fitting error comes from the temporal profiles of CH_2OO in Figure 1.

 Table S12. Rate coefficients obtained from MESMER calculations for product formation

 pathways from SOZs at 760 Torr.

Temperature	$k_{MESMER}^{SOZ - n \rightarrow P} (\mathbf{s}^{-1})$					
	Pathway 1	Pathway 2	Pathway 3	Pathway 4	Pathway 5	
200	1.36×10^{-06}	1.38×10^{-05}	1.05×10^{-30}	8.17×10^{-31}	4.67×10^{-27}	
225	1.48×10^{-04}	7.94×10^{-04}	2.09×10^{-31}	1.82×10^{-28}	1.32×10^{-24}	

250	7.94 × 10 ⁻⁰⁴	2.25×10^{-02}	2.87 × 10 ⁻²⁴	3.91 × 10 ⁻²⁴	7.00 × 10 ⁻²²	
275	1.49 × 10 ⁻⁰¹	3.68 × 10 ⁻⁰¹	8.08 × 10 ⁻²¹	8.72 × 10 ⁻²¹	3.63 × 10 ⁻¹⁹	
298	1.70×10^{00}	3.29×10^{00}	3.64×10^{-18}	3.42 × 10 ⁻¹⁸	6.96 × 10 ⁻¹⁷	
325	1.92×10^{01}	2.97×10^{01}	1.61 × 10 ⁻¹⁵	1.34 × 10 ⁻¹⁵	1.60×10^{-14}	
350	1.31×10^{02}	1.71×10^{02}	1.99 × 10 ⁻¹³	1.51 × 10 ⁻¹³	1.28 × 10 ⁻¹²	
375	6.96×10^{02}	7.86×10^{02}	1.30 × 10 ⁻¹¹	9.25 × 10 ⁻¹²	6.06 × 10 ⁻¹¹	
400	2.99×10^{03}	3.01×10^{03}	5.10×10^{-10}	3.43 × 10 ⁻¹⁰	1.83 × 10 ⁻⁰⁹	
Temperature	$k_{MESMER}^{SOZ-i\to P} (s^{-1})$					
	Pathway 1	Pathway 2	Pathway 3	Pathway 4	Pathway 5	
200	1.56×10^{-06}	2.12×10^{-05}	2.35×10^{-31}	1.08 × 10 ⁻³¹	1.82×10^{-26}	
225	1.58×10^{-04}	1.08×10^{-03}	5.83 × 10 ⁻²⁸	1.13 × 10 ⁻²⁷	4.15×10^{-24}	
250	6.65×10^{-03}	2.78×10^{-02}	1.99 × 10 ⁻²⁴	5.27 × 10 ⁻²⁴	1.81 × 10 ⁻²¹	
275	1.47×10^{-01}	4.24×10^{-01}	5.74 × 10 ⁻²¹	1.14 × 10 ⁻²⁰	8.19 × 10 ⁻¹⁹	
298	1.64×10^{00}	3.59×10^{00}	2.68×10^{-18}	4.43×10^{-18}	1.45×10^{-16}	
325	1.82×10^{01}	3.08×10^{01}	1.23×10^{-15}	1.71 × 10 ⁻¹⁵	3.10×10^{-14}	
350	1.23×10^{02}	1.70×10^{02}	1.55×10^{-13}	1.92 × 10 ⁻¹³	2.36×10^{-12}	
375	6.46×10^{03}	7.54×10^{02}	1.04×10^{-11}	1.16×10^{-11}	1.07×10^{-10}	

Section S5. Cumulative Atmospheric Lifetime:

$$\frac{1}{T_{cum}} = \frac{1}{T_{OH}} + \frac{1}{T_{Cl(MBl)}} + \frac{1}{T_{CH_200}}$$
(ES6)
$$\tau_x = \frac{1}{([x] \times k_x)}$$
(ES7)

Where, τ_x is the atmospheric lifetime, [x] is the mixing ratio and k_x is the corresponding rate coefficient. The mixing ratio values considered in this calculation were $[OH] = 1.0 \times 10^6$ molecule cm^{-3 13}, $[Cl(MBL)] = 1.3 \times 10^5$ molecule cm^{-3 14}, $[CH_2OO] = 10^4$ molecule cm^{-3 15} and the rate coefficients were $k(OH + nBD) = 5.7 \times 10^{-12} \times \exp\{411/T\}$ and $k(OH + iBD) = 6.8 \times 10^{-12} \times \exp\{393/T\}$ cm³ molecule⁻¹ s^{-1 16}, $k(Cl + nBD) = 3.09 \times 10^{-11} \times \exp\{446/T\}$ cm³ molecule⁻¹ s^{-1 17}, $k(CH_2OO + nBD) = 11.51 \times 10^{-14} \times \exp\{918.1/T\}$ and $k(CH_2OO + iBD) = 6.23 \times 10^{-14} \times \exp\{1051.4/T\}$ cm³ molecule⁻¹ s⁻¹ (this study). The rate coefficients for Cl + iBD were taken to be same as for Cl + nBD, as there were no temperature dependent rate coefficients available for the same.

Table S13. Comparison of the rate of the reactions $CH_2OO + nBD$ with OH + nBD and CH_2OO + iBD with OH + iBD.

Rate ratio(v)		[OH] (molecule cm ⁻³)			
$CH_2OO + nBD$			1.00 × 10 ⁴	1.00 × 10 ⁵	1.00 × 10 ⁶
	m ⁻³)	1.00 × 10 ⁴	0.1162	0.01162	0.001162
[CH ₂ 00	(molecule c	5.00 × 10 ⁴	0.581	0.0581	0.00581
		1.00 × 10 ⁵	1.162	0.1162	0.01162

Rate ratio(v)		[OH] (molecule cm ⁻³)		
CH ₂	OO + iBD	1.00 × 10 ⁴	1.00 × 10 ⁵	1.00 × 10 ⁶
]] m ⁻³)	$\begin{array}{c c} 1.00 \times 10^4 \\ \hline \end{array}$	0.0865	0.00865	0.000865
H ₂ 00	5.00×10^4	0.4325	0.04325	0.004325
[C (mole	1.00×10^5	0.865	0.0865	0.00865

Where,

$$v = \frac{k_{(CH_2OO+s)}[CH_2OO][s]}{k_{(OH+s)}[OH][s]} = \frac{k_{(CH_2OO+s)}[CH_2OO]}{k_{(OH+s)}s[OH]}$$

(ES8)

The rate coefficients used are, $k^{298 \text{ K}} (\text{OH} + \text{nBD}) = 2.26 \times 10^{-11} \text{ and } k^{298 \text{ K}} (\text{OH} + \text{iBD}) = 2.54 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ 15}, k^{298 \text{ K}} (\text{CH}_2\text{OO} + \text{nBD}) = 2.63 \times 10^{-12} \text{ and } k^{298 \text{ K}} (\text{CH}_2\text{OO} + \text{iBD}) = 2.20 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ (this study)}.$

References:

- K. W. McKee, M. A. Blitz, P. A. Cleary, D. R. Glowacki, M. J. Pilling, P. W. Seakins and L. Wang, *J. Phys. Chem. A*, 2007, **111**, 4043-4055. <u>doi.org/10.1021/jp067594y</u>
- D. R. Glowacki, C. H. Liang, C. Morley, M. J. Pilling and S. H. Robertson, J. Phys. Chem. A, 2012, 116, 9545-9560. <u>doi.org/10.1021/jp3051033.</u>
- A. Jalan, J. W. Allen and W. H. Green, *Phys. Chem. Chem. Phys.*, 2013, 15, 16841-16852. <u>doi.org/10.1039/C3CP52598H</u>
- R. M. Elsamra, A. Jalan, Z. J. Buras, J. E Middaugh. and W. H. Green, *Int. J. Chem. Kinet.*, 2016, 48, 474-488. <u>doi.org/10.1002/kin.21007</u>
- L. Franzon, J. Peltola, R. Valiev, N. Vuorio, T. Kurtén and A. Eskola, *J. Phys. Chem. A*, 2023, **127**, 744-488. <u>doi.org/10.1021/acs.jpca.2c07073</u>
- J. T. Bartis and B. Widom, J. Chem. Phys., 1974, 60, 3474-3482. doi.org/10.1063/1.1681562
- S. J. Klippenstein, and J. A. Miller, J. Phys. Chem. A, 2002, 106, 9267-9277. doi.org/10.1021/jp021175t
- J. A. Miller, S. J. Klippenstein, S. H. Robertson, M. J. Pilling and N. J. Green, *Phys. Chem. Chem. Phys.*, 2009, **11**, 1128-1137. <u>doi.org/10.1039/B811312B</u>
- A. P. Penner and W. Forst, J. Chem. Phys., 1977, 67, 5296-5307. doi.org/10.1063/1.434708
- P. Zhang, S. J. Klippenstein, H. Sun and C. K. Law, *Proc. Combust. Inst.*, 2011, 33, 425-432. <u>doi.org/10.1016/j.proci.2010.05.010</u>
- 11. J. Welty, G. L. Rorrer and D. G. Foster, *Fundamentals of momentum, heat, and mass transfer*. John Wiley & Sons, 2020.
- K. G. Joback and R. C. Reid, Chem. Eng. Commun., 1987, 57, 233-243. doi.org/10.1080/00986448708960487
- R. G. Prinn, R. F. Weiss, B. R. Miller, J. Huang, F. N. Alyea, D. M. Cunnold, P. J. Fraser, D. E. Hartley and P. G. Simmonds, *Science*, 1995, **269**, 187-192. <u>doi.org/10.1126/science.269.5221.187</u>
- 14. C. W. Spicer, E. G. Chapman, B. J. Finlayson-Pitts, R. A. Plastridge, J. M. Hubbe, J. D. Fast and C. M. Berkowitz, *Nature*, 1998, **394**, 353-356. <u>doi.org/10.1038/28584</u>
- A. Novelli, K. Hens, C. Tatum Ernest, M. Martinez, A. C. Nölscher, V. Sinha, P. Paasonen, T. Petäjä, M. Sipilä, T. Elste and C. Plass-Dülmer, *Atmos. Chem. Phys.*, 2017, 17, 7807-7826. <u>doi.org/10.5194/acp-17-7807-2017</u>
- 16. D. H. Semmes, A. R. Ravishankara, Gump-Perkins, C. A. and Wine, P. H., Int. J. Chem. Kinet., 1985 17, 303-313. doi.org/10.1021/es00090a012
- C. A. Cuevas, A. Notario, E. Martínez and J. Albaladejo, *Atmos. Environ.*, 2006, 40, 3845-3854. <u>doi.org/10.1016/j.atmosenv.2006.03.001</u>