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In the supplementary material, we present:

Table S1 Prior knowledge-based descriptors in CDS descriptors.

Table S2 E-state fingerprint spectrum.

Table S3 Atom and edge attributes for constructing the molecule graph.

Table S4-S11 The performance of different models with different hyperparameters.

Table S12 Top 10 features and meanings for the CDS-RF model using the SHAP tool.

Table S13 Performance of different work on the QM9 data set.

Figure S1 (a) Training curve, (b) error distribution, and (c) parity plot for CDS-MLP model.

Figure S2 (a) Training curve, (b) error distribution, and (c) parity plot for ECFP-MLP model.

Figure S3 (a) Training curve, (b) error distribution, and (c) parity plot for SOAP-MLP model.

Figure S4 (a) Error distribution, and (b) parity plot for CDS-RF model.

Figure S5 (a) Error distribution, and (b) parity plot for ECFP-RF model.

Figure S6 (a) Error distribution, and (b) parity plot for SOAP-RF model.
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Figure S7 EOF correlation on (a) oxygen (nO) and (b) nHbondA count in whole data set.

Figure S8 Top 10 features for the CDS-RF model using the SHAP tool.

Figure S9 Top 10 features on QM9-120k dataset.

Figure S10 (a) Training curve, (b) error distribution, and (c) parity plot for GCN model.

Figure S11 (a) Training curve, (c) error distribution, and (c) parity plot for MPNN model.

Table S1 Prior knowledge-based descriptors in CDS.

Abbreviation Description Abbreviation Description

nHbondA
Number of hydrogen 

bond acceptor
nH

Number of hydrogen 
atom

nHbondD
Number of hydrogen 

bond donor
nC

Number of carbon 
atom

nAHC
Number of aromatic 

heterocycle
nN

Number of nitrogen 
atom

nACC
Number of aromatic 

carbocycle
nO

Number of oxygen 
atom

nHC Number of heterocycle ob Oxygen balance

nR Number of ring Molecular weight Molecular weight

nRbond
Number of rotatable 

bond
MOL volume Molecular volume

nNO2 Number of nitro group MinPartialCharge
Minimum value of 

partial charge

nNNO2
Number of nitramine 

group
MaxPartialCharge

Maximum value of 
partial charge

nONO2
Number of nitric ester 

group
TPSA

Topological polar 
surface area

nC(NO2)3
Number of nitroform 

group
PMI1

Principle moments of 
inertia 1

nC(NO2)2
Number of dinitro 

group
PMI2

Principle moments of 
inertia 2

nC(NO2)
Number of single nitro 

group
PMI3

Principle moments of 
inertia 3

nCH3
Number of methyl 

group
NPR1

Normalized principal 
moments ratios 1

nOCH3
Number of methoxy 

group
NPR2

Normalized principal 
moments ratios 2

nNH2
Number of amino 

group
PBF Plane of best fit



total energy
Energy calculated by 

UFF
Eccentricity

Defined by 
sqrt(PMI3**2 - 
PMI1**2)/PMI3

Table S2 E-state fingerprint spectrum.

Index Type Index Type Index Type

1 -Li 28 =N-a 55 -GeH3

2 -Be- 29 aNaa 56 -GeH2-
3 >Be<[-2] 30 >N-a 57 >GeH-
4 -BH- 31 -N<<a 58 >Ge<
5 >B- 32 aaNsa 59 -AsH2

6 >B<[-1] 33 >N<[+1]a 60 -ASH-
7 -CH3

a 34 -OHa 61 >AS-
8 =CH2

a 35 =Oa 62 ->As=
9 -CH2-a 36 -O-a 63 ->As<
10 ≡CHa 37 aOaa 64 -she
11 =CH-a 38 -F-a 65 =Se
12 aCHaa 39 -SiH3 66 -Se-
13 >CH-a 40 -SiH2- 67 aSea
14 =C=a 41 >SiH- 68 >Se=
15 ≡C-a 42 >Si< 69 ≥Se=
16 =C<a 43 -PH2 70a -Br
17 aCa-a 44 -PH- 71 -SnH3

18 aaCaa 45 >P- 72 -SnH2-
19 >C<a 46 ->P= 73 >SnH-
20 -NH3[+1]a 47 ->P< 74 >Sn<
21 =N-a 48 -SH 75a -I
22 -NH2-[+1]a 49 =S 76 -PbH3

23 =NH-a 50 -S 77 -PbH2-
24 -NH-a 51 aSa 78 >PbH-
25 aNHaa 52 >S= 79 >Pb<
26 ≡Na 53 ≥S≤
27 >NH-[+1]a 54 -Cla

aThese fingerprints are selected in this study.

Table S3 Atom and edge attributes for constructing the molecule graph.

Graph-level Feature Description Size

atom type Type of atom(ex.C,N,O) 9

degree
Number of neighbors 

(ex.0,1,2,3,4)
9Atom

formal charge Integer electronic charge assigned 8



to atom
(ex.-3, -2, -1, 0, 1, 2, 3)

hybridization type s, sp, sp2, sp3 7

is_in_a_ring Whether the atom is in a ring 1

aromaticity
Whether the atom is part of an 

aromatic system
1

atomic mass Mass of atom, scaled 1

vdw_radius van der Waals Radius, scaled 1

covalent_radius covalent radius, scaled 1

chirality_type

Chirality of atom
(ex.CHI_UNSPECIFIED, 

CHI_TETRAHEDRAL_CW, 
CHI_TETRAHEDRAL_CCW)

4

n_hydrogens
Number of bonded hydrogens

0, 1, 2, 3, 4
6

bond type Single, double, triple, aromatic 4

conjugated Whether the bond is conjugated 1

in ring Whether the bond is part of ring 1
Bond

stereo type None,any,Z/E 4

Table S4 The performance of CDS-RF model with different hyperparameters.

Parameters Performance

n estimators R2 MAE RMSE

1 200 0.970 11.605 16.231

2 150 0.970 11.606 16.229

3 100 0.970 11.637 16.295

Table S5 The performance of ECFP-RF model with different hyperparameters.

Parameters Performance

n estimators R2 MAE RMSE

1 200 0.899 19.532 30.562

2 150 0.898 19.569 30.628

3 100 0.897 19.671 30.838

Table S6 The performance of SOAP-RF model with different hyperparameters.

Parameters Performance



n estimators R2 MAE RMSE

1 200 0.968 12.268 17.222

2 150 0.968 12.294 17.270

3 100 0.968 12.319 17.280

Table S7 The performance of CDS-MLP model with different hyperparameters.

Parameters Performance

hidden layer sizes learning rate R2 MAE RMSE

1 256,128 0.001 0.986 7.750 11.073

2 256,256 0.001 0.986 8.034 11.379

3 128,128 0.001 0.986 8.105 11.495

4 256,128 0.01 0.984 8.721 12.153

5 256,256 0.01 0.983 8.825 12.508

6 128,128 0.01 0.983 8.603 12.384

Table S8 The performance of ECFP-MLP model with different hyperparameters.

Parameters Performance

hidden layer sizes learning rate R2 MAE RMSE

1 256,128 0.001 0.933 17.946 24.991

2 256,256 0.001 0.933 18.052 25.038

3 128,128 0.001 0.926 19.111 26.247

4 256,128 0.01 0.931 18.195 25.429

5 256,256 0.01 0.927 18.835 26.057

6 128,128 0.01 0.924 19.240 26.678

Table S9 The performance of SOAP-MLP model with different hyperparameters.

Parameters Performance

hidden layer sizes learning rate R2 MAE RMSE

1 256,128 0.001 0.984 8.124 12.061

2 256,256 0.001 0.984 8.270 12.075

3 128,128 0.001 0.984 8.552 12.137

4 256,128 0.01 0.986 8.000 11.632

5 256,256 0.01 0.986 7.997 11.456

6 128,128 0.01 0.986 7.951 11.323



Table S10 The performance of GCN model with different hyperparameters.

Parameters Performance

hidden layer sizes learning rate R2 MAE RMSE

1 256,256 0.001 0.983 8.912 12.759

2 512,512 0.001 0.987 7.597 11.051

3 128,128 0.001 0.980 9.794 13.707

4 256,256 0.01 0.986 8.088 11.372

5 512,512 0.01 0.986 8.067 11.611

6 128,128 0.01 0.986 7.933 11.352

7 256,256,256 0.001 0.989 7.014 10.333

8 512,512,512 0.001 0.990 6.537 9.6493

Table S11 The performance of MPNN model with different hyperparameters.

Parameters Performance

hidden layer sizes learning rate R2 MAE RMSE

1 256,256 0.001 0.989 6.773 9.911

2 512,512 0.001 0.990 6.504 9.595

3 128,128 0.001 0.989 6.874 10.079

4 256,256 0.01 0.990 6.420 9.377

5 512,512 0.01 0.990 6.426 9.474

6 128,128 0.01 0.989 6.725 10.000

7 256,256,256 0.001 0.992 5.379 8.450

8 512,512,512 0.001 0.992 5.243 8.419

Figure S1 (a) Training curve, (b) error distribution, and (c) parity plot for CDS-MLP model.



Figure S2 (a) Training curve, (b) error distribution, and (c) parity plot for ECFP-MLP model.

Figure S3 (a) Training curve, (b) error distribution, and (c) parity plot for SOAP-MLP model.

Figure S4 (a) Error distribution, and (b) parity plot for CDS-RF model.

Figure S5 (a) Error distribution, and (b) parity plot for ECFP-RF model.



Figure S6 (a) Error distribution, and (b) parity plot for SOAP-RF model.

Figure S7 EOF correlation on (a) oxygen (nO) and (b) nHbondA count in whole data set.

To further understand the significant impact of nO on the EOF, we verify it from the following 

two aspects.

Firstly, to eliminate the influence of the ranking tool on the results, we use the SHAP (SHapley 

Additive exPlanations) tool to sort the importance of each feature in the CDS-RF model. The impact 

of each feature on the EOF is shown in Figures S8. The meaning of the first 10 features is shown in 

Table S12. Although the principles of feature sorting in SHAP and this study are different, nO still 

has the greatest impact on the model, which supports the reliability of the results from another 

perspective.

Secondly, it is generally believed that nN and nC should have a greater impact. However, nN 

and nC have a smaller influence in our results. We speculate that this is due to the uniqueness of the 

current data set. To support our hypothesis, we conduct an auxiliary verification using a publicly 

available QM9 dataset1, consisting of 134 k organic small molecules containing CHONF, 

encompassing geometric, energetic, electronic, and thermodynamic properties. After excluding 

molecules that cannot be processed and species containing the element F, we train our RF model 



using the same CDS descriptors on the remaining 120,056 molecules. We then perform feature 

importance ranking and obtain the results shown in Figure S9. The most influential factors are 

molecule weight, oxygen balance, nO, nC, nH, and nN, where the top two factors are closely related 

to the quantities of C, O, and N. Additionally, nC and nN exhibit high ranking. The results from the 

QM9 dataset demonstrate substantial differences in feature importance ranking obtained from 

different datasets. Therefore, we believe that the significant impact of nO is attributed to the 

uniqueness of the data set in our study.

Figure S8 Top 10 features for the CDS-RF model using the SHAP tool.

Table S12 Top 10 features and meanings for the CDS-RF model using the SHAP tool.

Features Meaning

nO The number of O

ESTATE_65 The sum of the electrical topological state index of aO

ESTATE_59 The sum of the electrical topological state index of -N<<

ESTATE_35 The sum of the electrical topological state index of -CH3

PBF Plane of best fit

ESTATE_45 The sum of the electrical topological state index of aCa

ESTATE_6 The number of -CH-

ESTATE_64 The sum of the electrical topological state index of -O-

ESTATE_21 The number of =N-



Figure S9 Top 10 features on QM9-120k dataset.

Figure S10 (a) Training curve, (b) error distribution, and (c) parity plot for GCN model.

Figure S11 (a) Training curve, (c) error distribution, and (c) parity plot for MPNN model.

In order to validate the reliability of the MPNN model, we conduct experiments on the publicly 

available QM9 dataset and compare the performance of our MPNN model with other models on the 

same QM9 dataset. The QM9 dataset comprises 130,829 molecules containing CHONF with no 

more than 9 heavy atoms. This dataset exists in two versions, as provided by Faber et al. 2 and 

Ramakrishnan et al. 1 We conduct tests on the U0 (internal energy at 0 K) from both versions of the 

QM9 dataset and compare the results with widely used models such as Chemprop3, 4 and Megnet5. 

The results are shown in Table S13.

For the U0 from Faber et al. 2, our MPNN model yield an MAE of 0.0494 eV, lower than 



Gabriel et al.’s6 results but slightly higher than Megnet5 and SchNet7, 8. The MAE in Faber’s2 work 

ranges from 0.0421 to 1.08 eV, and our error falls within the same range. Overall, our findings are 

within a reasonable range. 

Regarding the U0 from Ramakrishnan et al. 1, after processing, we obtain a total of 120,056 

data points. The RMSE of this dataset is 2.47 Hartree, which is close to the reported RMSE of 

Chemprop3, 4 as 2.44 Hartree. In summary, the prediction performance obtained from various works 

on the QM9 dataset are generally consistent with the performance of our MPNN model. 

Table S13 Performance of different work on the QM9 data set.

Data set Model R2 MAE RMSE Number

Faber 2 - 0.0421~1.08 eV - 118k

Megnet-simple 5 - 0.012 eV - 118k

SchNet7, 8 - 0.014 eV - 100k

Gabriel 6 - 0.0573~0.084 eV - 101k
Faber et al.2

This work 0.989 0.0494 eV 0.1034 eV 130k

Chemprop 3, 4 - 1.08 Hartree 2.44 Hartree 130kRamakrishnan et 
al.1 This work 0.996 0.91 Hartree 2.47 Hartree 120k
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