ELECTRONIC SUPPLEMENTARY INFORMATION

Is 1-methylcytosine a faithful model for ultrafast deactivation dynamics of cytosine nucleosides in solution?

Chensheng Ma,^{*a} Qingwu Xiong,^{a,b} Jingdong Lin,^a Xiaoyan Zeng,^a Mingliang Wang,^a Wai-Ming Kwok^{*c}

^aCollege of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.

^bCollege of Physics and optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.

^cDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.

Figure S1 Absorption spectra of 1mCyt in H ₂ O and CH ₃ CN before and after time-	
resolved experiments (TR expt)	5
Kinetic analysis and decay associated analysis	5
Details of simulation of experimentally measured fluorescence spectra and decay	
associated spectra by log-normal functions	6
Table S1 Calculated thermodynamic parameters of $1mCyt$ at the ground state (S ₀) by	
TPSS/6-31G+(d,p) calculations and excited state (S ₁) by B3LYP/6-31G+(d,p)	
calculations, under the bulk solvent condition of H ₂ O, CH ₃ CN and CH ₃ OH, and	
inclusion of one water molecule (1W) and one methanol molecule (1M)	7
Table S2 The atom coordinates of 1 mCyt in S_0 in the bulk solvent condition of H_2O by	
TPSS/6-31G+(d,p) calculations	7
Table S3 The atom coordinates of 1 mCyt in S_1 in the bulk solvent condition of H_2O by	
B3LYP/6-31G+(d,p) calculations	7

Table S4 The atom coordinates of 1 mCyt in S_1 with inclusion of one water molecule
(1W) by B3LYP/6-31G+(d,p) calculations
Table S5 The atom coordinates of 1 mCyt in S ₀ in the bulk solvent condition of CH ₃ CN
by TPSS/6-31G+(d,p) calculations
Table S6 The atom coordinates of 1 mCyt in S_1 in the bulk solvent condition of CH_3CN
by B3LYP/6-31G+(d,p) calculations
Table S7 The atom coordinates and frequencies of $1mCyt$ in S_1 with inclusion of one
methanol molecule (1M) by B3LYP/6-31G+(d,p) calculations9
Figure S2 Absorption transition Kohn-Sham orbitals for 1mCyt by TPSS/6-31G+(d,p)
calculations in the bulk solvent condition of H ₂ O and CH ₃ CN9
Figure S3 Fluorescence transition Kohn-Sham orbitals for 1mCyt by B3LYP/6-31G+(d,p)
calculations, with the inclusion of one water molecule (1W) and one methanol
molecule (1M), and in the bulk solvent condition of CH ₃ CN10
Figure S4 Optimized top-view and side-view structures of 1 mCyt at the ground state (S ₀)
by TPSS/6-31G+(d,p) calculations and the lowest energy excited state (S ₁) by
B3LYP/ $6-31G+(d,p)$ calculations, with the keto oxygen hydrogen-bonded to one
methanol molecule (1M)10
Table S8 The fitting parameters of log-normal simulation of steady-state fluorescence
spectra and decay associated spectra (DAS) of $1mCyt$ in H_2O and CH_3CN after 267
nm excitation: ν_p is the peak frequency, γ the asymmetry, and Δ the bandwidth
parameter of the simulated spectra11
Table S9a Calculated absorption electronic transition nature, energies and the

corresponding oscillation strengths for 1mCyt at the ground state by TPSS/6-

$31G+(d,p)$ calculations under the bulk solvent condition of H_2O and CH_3CN , and	
inclusion of one water molecule (1W)	11

- **Figure S6** (a) 2D fs-TRF spectra, (b) experimental (\circ , \Box , \diamond) and fitted (solid lines) TRF

	intensity decay profiles, (c) 2D fs-TRFA spectra, and (d) decay associated spectra
	(DAS) from global analysis of fs-TRF spectra after 267 nm excitation of 1mCyt in
	CH ₃ CN. The time delays for 2D spectra shown in (a) are 0, 0.1, 0.15, 0.2, 0.3, 0.4,
	0.6, 0.85, 1.25, 1.75, 2.5 and 10 ps. Insert in (a) shows intensity normalized TRF
	spectra at the denoted time delays. # due to solvent Raman scattering
Ta	ble S11 Photophysical parameters obtained from fs-TRF for $1mCyt$ in H ₂ O and
	CH ₃ CN with 267 nm excitation15

 Figure S7 Normalized fluorescence spectra ($\lambda_{ex} = 267 \text{ nm}$) of 1mCyt in H₂O and CH₃OH.

Figure S1 Absorption spectra of 1mCyt in H₂O and CH₃CN before and after timeresolved experiments (TR expt).

Kinetic analysis and decay associated analysis

In order to obtain the kinetic decay profiles of fs-TRF and fs-TA intensities, the instrument response function $(g(\tau))$ represented by the Gaussian function was convoluted with a multiple exponential function (f(t)) to do global fitting for the experimental time profiles (F(t)), as showed in equations 1-4:¹⁻⁵

$$F(t) = \int_{-\infty}^{t} g(\tau) f(t - \tau) d\tau$$
 Equation 1

$$g(\tau) = \frac{1}{\pi^{1/2}\sigma} \exp[-\{(t - \tau_0)/\sigma\}^2]$$
 Equation 2

$$f(t-\tau) = \sum_{i} a_i \exp(t-\tau)/\tau_i$$

Equation 3

4

$$\sum_{i} a_i = 1$$
 Equation

Where τ_0 and t are the time-shift which can be used to determine the absolute time-zero, and delay time after photo-excitation, respectively. While τ_i and a_i represent time constants and relative amplitudes associated with the time constants, respectively.

The spectra of time constants fitted from fs-TRF, called decay associated spectra (DAS),⁶ were obtained by using decay associated analysis. This method is achieved by using the multi-exponential function to get the relative amplitudes corresponding to the time constants at every wavelength for spectral plotting.

The average fluorescence lifetime ($\langle \tau \rangle$) is defined by the following equation:

$$<\tau> = \sum_{i} a_i \tau_i$$
 Equation 5

Details of simulation of experimentally measured fluorescence spectra and decay associated spectra by log-normal functions

Log-normal line shape function is expressed as following equations:¹

$$F(\nu) = h \begin{cases} \exp[-\ln(2)\{\ln(1+\alpha)/\gamma\}^2] & \alpha > -1 \\ 0 & \alpha \le -1 \end{cases}$$
 Equation 6
$$\alpha = 2\gamma(\nu - \nu_p)/\Delta$$
 Equation 7

A nonlinear least-squares fitting was used to simulate the fluorescence spectra by adjusting the four parameters, the peak height *h*, the peak frequency v_p , the asymmetry γ and the bandwidth parameter Δ . The first step of the spectral simulation was to represent the spectra in wavenumber (v in cm⁻¹) units by using a relation equation $F(v) = \lambda^2 F(\lambda)$. For readers' convenience, the fitting result of v_p was shown in units of wavelength (nm) in Table S8 which summarized the fitting parameters (γ , v_p , and Δ).

Table S1 Calculated thermodynamic parameters of 1mCyt at the ground state (S_0) by TPSS/6-31G+(d,p) calculations and excited state (S_1) by B3LYP/6-31G+(d,p) calculations, under the bulk solvent condition of H₂O, CH₃CN and CH₃OH, and inclusion of one water molecule (1W) and one methanol molecule (1M)

		H_2O	1W	CH ₃ CN	CH ₃ OH	1M
\mathbf{S}_0	Etot/Hartree	-434.458	-510.769	-434.457	-434.195	-550.098
\mathbf{S}_1	E _{tot} /Hartree	-434.140	-510.588	-434.139	-434.139	-549.886

Table S2 The atom coordinates of 1 mCyt in S₀ in the bulk solvent condition of H₂O by TPSS/6-31G+(d,p) calculations

Number	Atom	Х	Y	Ζ	Number	Atom	Х	Y	Ζ
1	С	-0.2681	1.502017	0.000405	9	Н	-3.01188	0.161498	0.890831
2	С	-0.62016	-0.896494	-0.00033	10	Н	-2.78774	1.699588	0.003607
3	С	1.556398	-0.02536	-0.00073	11	Н	-3.01344	0.164862	-0.88895
4	С	1.086135	1.325912	-0.00067	12	0	-1.44279	-1.82988	-0.00016
5	Н	-0.72941	2.484474	0.0021	13	Ν	0.732114	-1.0813	0.001753
6	Н	1.760656	2.173846	-0.00257	14	Ν	2.889453	-0.28201	-0.02646
7	Ν	-1.1203	0.438844	-0.00013	15	Н	3.206033	-1.23808	0.075115
8	С	-2.5803	0.627961	0.001449	16	Н	3.565315	0.459909	0.094211

Table S3 The atom coordinates of 1mCyt in S_1 in the bulk solvent condition of H_2O by B3LYP/6-31G+(d,p) calculations

Number	Atom	Х	Y	Ζ	Number	Atom	Х	Y	Ζ
1	С	-0.26775	1.495963	-0.000114	9	Н	-3.01234	0.165933	0.887935
2	С	-0.62045	-0.88958	-0.000056	10	Н	-2.78577	1.695272	-0.000807
3	С	1.555139	-0.02845	-0.000079	11	Н	-3.01277	0.164325	-0.886654
4	С	1.082721	1.323213	-0.000197	12	0	-1.43594	-1.82782	0.000094
5	Н	-0.72531	2.478473	-0.000034	13	Ν	0.729046	-1.0755	0.000163
6	Н	1.756257	2.170021	-0.00054	14	Ν	2.882886	-0.28016	-0.002699
7	Ν	-1.12028	0.434962	-0.000153	15	Н	3.209133	-1.2351	0.008967
8	С	-2.57385	0.626167	0.000103	16	Н	3.561873	0.464614	0.011259

Number	Atom	Х	Y	Z	Number	Atom	Х	Y	Z
1	С	1.908251	0.784801	0.388348	11	Н	-0.43623	2.97197	-0.605926
2	С	-0.41514	0.441219	-0.069527	12	0	-1.56163	0.98606	-0.177783
3	С	0.991393	-1.41593	-0.050788	13	Ν	-0.29416	-0.87894	-0.003601
4	С	2.085497	-0.61449	0.279767	14	Ν	1.070151	-2.75757	-0.371002
5	Н	2.685232	1.479423	0.67179	15	Н	0.240848	-3.29714	-0.149625
6	Н	3.063037	-1.04412	0.477001	16	Н	1.931466	-3.22998	-0.12604
7	Ν	0.684609	1.311594	-0.013256	17	0	-3.91491	-0.60282	0.236211
8	С	0.562637	2.745993	-0.241531	18	Н	-3.67684	-1.53557	0.316198
9	Н	0.737286	3.289483	0.696472	19	Н	-3.06869	-0.13443	0.1018
10	Н	1.316201	3.05932	-0.971696					

Table S4 The atom coordinates of 1mCyt in S₁ with inclusion of one water molecule (1W) by B3LYP/6-31G+(d,p) calculations

Table S5 The atom coordinates of 1mCyt in S₀ in the bulk solvent condition of CH₃CN by TPSS/6-31G+(d,p) calculations

Number	Atom	Х	Y	Z	Number	Atom	Х	Y	Ζ
1	С	-0.268104	1.502017	0.000405	9	Н	-3.01188	0.161498	0.890831
2	С	-0.620155	-0.896494	-0.000332	10	Н	-2.78774	1.699588	0.003607
3	С	1.556398	-0.02536	-0.000726	11	Н	-3.013438	0.164892	-0.888947
4	С	1.086135	1.325912	-0.00067	12	0	-1.442786	-1.829878	-0.000159
5	Н	-0.729414	2.484474	0.0021	13	Ν	0.732114	-1.081304	0.001753
6	Н	1.760656	2.173846	-0.002565	14	Ν	2.889453	-0.282009	-0.026458
7	Ν	-1.120296	0.438844	-0.000127	15	Н	3.206033	-1.23808	0.075115
8	С	-2.580298	0.627961	0.001449	16	Н	3.565315	0.459909	0.094211

Table S6 The atom coordinates of 1 mCyt in S_1 in the bulk solvent condition of CH₃CN by B3LYP/6-31G+(d,p) calculations

Number	Atom	Х	Y	Ζ	Number	Atom	Х	Y	Ζ
1	С	-0.333392	1.500473	0.238029	9	Н	-3.022741	-0.343369	-0.575579
2	С	-0.576767	-0.869099	0.089672	10	Н	-3.063241	0.983963	0.609733
3	С	1.567713	0.033399	-0.022866	11	Н	-2.687353	1.337799	-1.095103
4	С	1.064271	1.319894	0.148161	12	0	-1.381436	-1.860253	0.109724
5	Н	-0.819243	2.445902	0.430654	13	Ν	0.728928	-1.064545	0.194721
6	Н	1.722101	2.179974	0.234691	14	Ν	2.879812	-0.272741	-0.334837
7	Ν	-1.146052	0.400724	-0.039629	15	Н	3.20203	-1.164649	0.0239
8	С	-2.567371	0.603067	-0.292693	16	Н	3.554396	0.471947	-0.209627

Number	Atom	Х	Y	Ζ	Number	Atom	Х	Y	Ζ
1	С	2.432905	-0.386099	0.496926	12	0	-0.860268	-1.328468	-0.313334
2	С	0.135522	-0.550616	-0.14013	13	Ν	-0.02833	0.764434	-0.108827
3	С	1.119236	1.559602	-0.09729	14	Ν	0.910039	2.909645	-0.314828
4	С	2.324108	1.014392	0.350845	15	Н	0.088967	3.125157	-0.867515
5	Н	3.315222	-0.89663	0.853626	16	Н	1.72122	3.451279	-0.583581
6	Н	3.168199	1.644948	0.613990	17	0	-3.6413	-0.634872	-0.185805
7	Ν	1.384581	-1.167886	0.019277	18	Н	-2.674113	-0.754541	-0.189904
8	С	1.579899	-2.602362	-0.15082	19	С	-3.957432	0.588893	0.476095
9	Н	0.689984	-3.039302	-0.59698	20	Н	-5.044863	0.697029	0.458193
10	Н	2.450987	-2.772389	-0.7918	21	Н	-3.624407	0.585052	1.522423
11	Η	1.763951	-3.074355	0.823422	22	Н	-3.512024	1.454266	-0.031817

Table S7 The atom coordinates and frequencies of 1mCyt in S_1 with inclusion of one methanol molecule (1M) by B3LYP/6-31G+(d,p) calculations

Figure S2 Absorption transition Kohn-Sham orbitals for 1mCyt by TPSS/6-31G+(d,p) calculations in the bulk solvent condition of H₂O and CH₃CN.

Figure S3 Fluorescence transition Kohn-Sham orbitals for 1mCyt by B3LYP/6-31G+(d,p) calculations, with the inclusion of one water molecule (1W) and one methanol molecule (1M), and in the bulk solvent condition of CH_3CN .

Figure S4 Optimized top-view and side-view structures of 1mCyt at the ground state (S_0) by TPSS/6-31G+(d,p) calculations and the lowest energy excited state (S_1) by B3LYP/6-31G+(d,p) calculations, with the keto oxygen hydrogen-bonded to one methanol molecule (1M).

Table S8 The fitting parameters of log-normal simulation of steady-state fluorescence spectra and decay associated spectra (DAS) of 1mCyt in H₂O and CH₃CN after 267 nm excitation: v_p is the peak frequency, γ the asymmetry, and Δ the bandwidth parameter of the simulated spectra

Solvent		γ	v _p (nm)	Δ (cm ⁻¹)
H ₂ O	Steady-state fluorescence	-0.39±0.01	324±1	5129±10
	$DAS-\tau_1$	-0.33±0.01	315±2	5154±50
	$DAS-\tau_2$	-0.31±0.01	324±2	4748 ± 20
CH ₃ CN	Steady-state fluorescence	-0.31±0.01	336±1	5731±10
	$DAS-\tau_1$	-0.31±0.01	315±2	5051±60
	$DAS-\tau_2$	-0.46±0.01	333±1	5516±20

Table S9a Calculated absorption electronic transition nature, energies and the corresponding oscillation strengths for 1mCyt at the ground state by TPSS/6-31G+(d,p) calculations under the bulk solvent condition of H_2O and CH_3CN , and inclusion of one water molecule (1W)

Solvent	State ^a	$\lambda^{b}(eV^{c}) f^{d}$	Transition orbitals ^e
H ₂ O	$S_1(\pi\pi^*)$	279 (4.4495) 0.0769	H→L(85%)
	$S_2(n\pi^*)$	277 (4.4799) 0.0004	H-2→L(97%)
	$S_3(\pi\pi^*)$	250 (4.9523) 0.0985	H-1→L(66%)
1W	$S_1(\pi\pi^*)$	275 (4.5109) 0.0743	H→L(79%)
	$S_2(n\pi^*)$	264 (4.7043) 0.0001	H-1→L(99%)
CH ₃ CN	$S_1(\pi\pi^*)$	279 (4.4402) 0.0752	H→L(86%)
	$S_2(n\pi^*)$	278 (4.4603) 0.0005	H-2→L(96%)
	$S_3(\pi\pi^*)$	251 (4.9457) 0.0929	H-1→L(61%)

^a Electronic transition nature; ^b Calculated absorption energy in wavelength and ^c electron volt; ^d Calculated oscillator strength at the maximum absorption; ^e Molecular orbital of the corresponding electronic transition with H donating for HOMO, L for LUMO and the bracketed value for percentage contribution of the correlated transition.

Table S9b Calculated absorption electronic transition nature, energies and the corresponding oscillation strengths for 1mCyt at the ground state by B3LYP/6-31G+(d,p) calculations under the bulk solvent condition of H₂O and CH₃CN, and inclusion of one water molecule (1W)

Solvent	State ^a	$\lambda^{b}(eV^{c}) f^{d}$	Transition orbitals ^e
H ₂ O	$S_1(\pi\pi^*)$	262 (4.7322) 0.1285	H→L(92%)
	$S_2(n\pi^*)$	235 (5.2777) 0.0064	H-2→L(57%)
1W	$S_1(\pi\pi^*)$	256 (4.8422) 0.1303	H→L(79%)
	$S_2(n\pi^*)$	230 (5.3936) 0.0024	H-1→L(99%)
CH ₃ CN	$S_1(\pi\pi^*)$	262 (4.7254) 0.1272	H→L(92%)
	$S_2(n\pi^*)$	236 (5.2623) 0.0058	$H-2\rightarrow L(52\%)$

^a Electronic transition nature; ^b Calculated absorption energy in wavelength and ^c electron volt; ^d Calculated oscillator strength at the maximum absorption; ^e Molecular orbital of the corresponding electronic transition with H donating for HOMO, L for LUMO and the bracketed value for percentage contribution of the correlated transition.

Table S10 Calculated fluorescence electronic transition nature, energies and the corresponding oscillation strengths for 1mCyt at the excited state under the bulk solvent condition of H_2O , CH_3CN and CH_3OH , and inclusion of one water molecule (1W) and one methanol molecule (1M) by B3LYP/6-31G+(d,p) calculations

Solvent	State ^a	$\lambda^{b}(eV^{c}) f^{d}$	Transition orbitals ^e
H_2O	$S_1(\pi\pi^*)$	338 (3.6692) 0.0886	H←L(97%)
	$S_2(n\pi^*)$	292 (4.2522) 0.0165	H-1←L(99%)
	$S_3(\pi\pi^*)$	268 (4.6270) 0.2240	H+1←L(71%)
1W	$S_1(\pi\pi^*)$	323 (3.8337) 0.1181	H←L(97%)
	$S_2(n\pi^*)$	271 (4.5704) 0.0212	H-2←L(96%)
	$S_{3}(\pi\pi^{*})$	264 (4.7004) 0.2294	H-1←L(74%)
CH ₃ CN	$S_1(\pi\pi^*)$	340 (3.6433) 0.0814	H←L(97%)
	$S_2(n\pi^*)$	295 (4.2057) 0.0167	H-1←L(99%)
	$S_{3}(\pi\pi^{*})$	269 (4.6146) 0.2128	H-2←L(69%)
CH ₃ OH	$S_1(\pi\pi^*)$	339 (3.6560) 0.0824	H←L(96%)
	$S_2(\pi \pi^*)$	294 (4.2205) 0.0132	H-2←L(97%)
1M	$S_1(\pi\pi^*)$	326 (3.8020) 0.1051	H←L(97%)
	$S_2(\pi \pi^*)$	276 (4.4937) 0.0138	H-2←L(94%)

^a Electronic transition nature; ^b Calculated fluorescence energy in wavelength and ^c electron volt; ^d Calculated oscillator strength at the maximum fluorescence; ^e Molecular orbital of the corresponding electronic transition with H donating for HOMO, L for LUMO and the bracketed value for percentage contribution of the correlated transition.

Figure S5 2D fs-TA spectra at the late time delays (\sim 0-6000 ps) after 267 nm excitation of 1mCyt in H₂O.

Figure S6 (a) 2D fs-TRF spectra, (b) experimental (\circ , \Box , \diamond) and fitted (solid lines) TRF intensity decay profiles, (c) 2D fs-TRFA spectra, and (d) decay associated spectra (DAS) from global analysis of fs-TRF spectra after 267 nm excitation of 1mCyt in CH₃CN. The time delays for 2D spectra shown in (a) are 0, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.85, 1.25, 1.75, 2.5 and 10 ps. Insert in (a) shows intensity normalized TRF spectra at the denoted time delays. # due to solvent Raman scattering.

Solvent	Probe ^a /nm	τ_1^{b}/ps (a ₁)		τ_2^{b}/ps (a ₂)		
H_2O	309		(0.90)		(0.10)	
	330	0.18 ± 0.01	(0.81)	0.76 ± 0.03	(0.19)	
	364		(0.77)		(0.23)	
CH ₃ CN	309		(0.77)		(0.23)	
	330	0.20 ± 0.01	(0.54)	0.77 ± 0.01	(0.46)	
	364		(0.34)		(0.66)	

Table S11 Photophysical parameters obtained from fs-TRF for 1 mCyt in H_2O and CH_3CN with 267 nm excitation

^aWavelength for TRF time profile examined in the kinetic analysis; ^bTime constant (τ_i , i =1-2) and the corresponding preexponential factor (a_i , i=1-2) obtained from kinetic analysis of the TRF decay.

Table S12 Photophysical parameters obtained from fs-TA for 1mCyt in H₂O with 267 nm excitation

Probe ^a /nm	$\tau_1^{b}/ps(a_1)$		$\tau_2^{\ b}/ps(a_2)$		$\tau_3^{b,c}/ps$ (a ₃)		$\tau_4^{b,c}/ps(a_4)$	
337	0.10	(-0.68)	0.76	(0.29)	57	(0.02)		(0.01)
451	0.18	(0.38)	0.76	(0.46)	5.7	(0.11)	100000	(0.05)
551	±0.01	(0.59)	±0.05	(0.41)	±0.5			

^aWavelength for TA time profile examined in the kinetic analysis; ^bTime constant (τ_i , i =1-4) and the corresponding pre-exponential factor (a_i , i=1-4) obtained from kinetic analysis of the TA decay; ^cTime-independent offset.

Figure S7 Normalized fluorescence spectra ($\lambda_{ex} = 267 \text{ nm}$) of 1mCyt in H₂O and CH₃OH.

Figure S8 (a) 2D fs-TRF spectra, (b) experimental (\circ , \Box , \diamond) and fitted (solid lines) TRF intensity decay profiles from global analysis of fs-TRF spectra after 267 nm excitation of Cyt in H₂O. And (c) Experimental (\Box) and fitted (solid lines) TRF intensity decay profiles at 330 nm from global analysis of fs-TRF spectra after 267 nm excitation of 1mCyt and Cyt in H₂O. The time delays for 2D spectra shown in (a) are 0, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.7, 1, 1.8 and 10 ps. # due to solvent Raman scattering.

Figure S9 (a-b) 2D fs-TA spectra, (c-d) experimental (\circ , \Box , \diamond) and fitted (solid lines) TA intensity decay profiles at the denoted wavelengths in (c) (~0-3 ps), (d) (~0-10 ps) the early time delays after 267 nm excitation of Cyt in H₂O. And (e) Experimental (\Box) and fitted (solid lines) TA intensity decay profiles at 451 nm from global analysis of fs-TA spectra after 267 nm excitation of 1mCyt and Cyt in H₂O. The time delays for 2D spectra shown in (a) are 0, 0.1, 0.15, 0.2, 0.3 and 0.6 ps, while those in (b) are 0.6, 1.25, 2, 3, 6 and 25 ps.

References

- 1. W.-M. Kwok, C. Ma and D. L. Phillips, *J. Am. Chem. Soc.*, 2006, **128**, 11894-11905.
- 2. C. Ma, C. C.-W. Cheng, C. T.-L. Chan, R. C.-T. Chan and W.-M. Kwok, *Phys. Chem. Chem. Phys.*, 2015, **17**, 19045-19057.
- 3. C. Ma, R. C. T. Chan, C. T. L. Chan, A. K. W. Wong and W.-M. Kwok, J. Phys. Chem. Lett., 2019, 10, 7577-7585.
- R. C.-T. Chan, C. T.-L. Chan, C. Ma, K.-Y. Gu, H.-X. Xie, A. K.-W. Wong, Q.-W. Xiong, M.-L. Wang and W.-M. Kwok, *Phys. Chem. Chem. Phys.*, 2021, 23, 6472-6480.
- 5. C. Ma, Q. Xiong, J. Lin, A. K.-W. Wong, M. Wang and W.-M. Kwok, *Photochem. Photobiol.*, 2023, DOI: 10.1111/php.13849.
- 6. I. H. M. van Stokkum, D. S. Larsen and R. van Grondelle, *Biochim. Biophys. Acta Bioenerg.*, 2004, **1657**, 82-104.