Nitrogen Adsorption on $Nb_2C_6H_4^+$ Cations: The Important Role of Benzyne (*Ortho*-C₆H₄)

Feng-Xiang Zhang, Yi-Heng Zhang, Ming Wang, Jia-Bi Ma*

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

*Jia-Bi Ma, Email: majiabi@bit.edu.cn

	Exp	Nb-Nb	Nb-C	Nb-N	N≡N	С-С	С-Н	C≡N	H-H	N-H			
Method		5.22	5.62	6.56	9.76	6.21	3.46	7.76	4.48	3.47	MSE	RMSE	MAE
References		1	2	3	4	4	4	4	5	4			
	B1B95	3.67	5.04	5.92	9.44	6.01	3.35	7.42	4.38	3.35	0.43	0.66	0.50
	B1LYP	3.69	4.85	5.99	9.33	5.77	3.43	7.25	4.44	3.49	0.49	0.70	0.54
	B3LYP	4.05	5.09	6.25	9.60	5.98	3.49	7.51	4.50	3.56	0.24	0.49	0.35
	B3P86	3.89	5.02	6.26	9.78	6.24	3.59	7.74	4.57	3.66	0.29	0.53	0.34
	B3PW91	3.43	5.16	5.91	9.43	6.08	3.42	7.49	4.37	3.46	0.51	0.71	0.47
	M05	5.99	6.41	6.92	9.36	6.11	3.45	7.54	4.41	3.41	0.20	0.44	0.35
Hybrid Functionals	M052X	4.48	5.44	6.14	9.46	5.82	3.38	7.24	4.36	3.37	0.16	0.40	0.36
	PBE0	3.32	4.87	5.85	9.42	6.10	3.38	7.48	4.25	3.43	0.62	0.79	0.56
	X3LYP	4.03	5.09	6.23	9.58	5.97	3.48	7.49	4.47	3.55	0.25	0.50	0.36
	M06	5.92	6.10	6.53	9.27	6.04	3.43	7.48	4.38	3.33	0.14	0.37	0.30
	M062X	4.39	5.64	6.25	9.44	5.91	3.38	7.38	4.40	3.34	0.14	0.38	0.30
	BHANDHLYP	2.42	4.11	5.12	8.63	5.08	3.36	6.55	4.42	3.34	2.03	1.43	1.19
	BMK	3.74	5.11	6.49	9.49	5.77	3.40	7.40	4.37	3.45	0.35	0.60	0.42
	M06L	5.39	6.05	6.70	9.41	6.34	3.37	7.76	4.21	3.33	0.06	0.24	0.22
Pure Functionals	BLYP	5.19	5.66	6.94	10.09	6.35	3.50	8.04	4.47	3.63	0.04	0.22	0.18
	BPW91	4.42	5.43	6.55	9.95	6.50	3.43	8.05	4.31	3.53	0.11	0.34	0.25
	BP86	5.00	5.70	6.92	10.25	6.61	3.61	8.25	4.56	3.74	0.12	0.34	0.32
	BPBE	4.43	5.44	6.55	9.95	6.51	3.41	8.05	4.29	3.52	0.11	0.34	0.25
	PBE	4.88	5.72	6.85	10.24	6.72	3.47	8.31	4.27	3.59	0.13	0.36	0.32
	TPSS	4.47	5.35	6.45	9.53	6.20	3.57	7.66	4.62	3.65	0.10	0.31	0.24

Table S1. DFT-calculated and experimental bond dissociation energies.

MSE, RMSE and MAE represents mean square error, root mean square error and mean absolute error, respectively.

Unit: eV

Fig. S1 Variations of the relative intensities of the reactant and product cations in the reactions of Nb_2^+ with C_6H_6 relative to the C_6H_6 pressures for 5 ms. The solid lines are fitted to the experimental data points by using the equations derived from the approximation of the pseudo-first-order reaction mode.

Fig. S2 DFT-calculated structures and relative energies of Nb₂⁺ cluster on C₆H₆. The lowest-energy isomers of Nb₂C₆H₆⁺ are marked with a magenta color. The point group of each structure is also given, and the superscripts indicate the spin multiplicities. The zero-point vibration corrected energies (ΔH_{0K} in eV) of each structure are given.

Fig. S3 DFT-calculated structures and relative energies of Nb₂C₆H₄⁺. The two lowestenergy isomers of Nb₂C₆H₄⁺ are marked with a magenta color. C₆H₄ is designed with three types: (a) *ortho*-, (b) *meta*-, and (c) *para*-sites, respectively. Various adsorption modes of Nb₂⁺ are considered in each C₆H₄ type. The point group of each structure is

given, and the superscripts indicate the spin multiplicities. The zero-point vibration corrected energies (ΔH_{0K} in eV) of each structure are given.

Fig. S4 Adaptive natural density partitioning (AdNDP) bonding analysis for two-center two electron (2c–2e) bonds in Nb₂C₆H₄⁺ cluster. ON stands for the occupation number. The red and blue colors represent the positive value and negative value, respectively.

Fig. S5 DFT-calculated structures and relative energies of (a) NbN₂⁺, (b) Nb₂N₂⁺, and (c) (d) Nb₂C₆H₄N₂⁺. The lowest-energy structure in each type is marked with a magenta color. Two isomers of Nb₂C₆H₄N₂⁺ is considered in (c) and (d). Note that there is a significantly larger N₂ adsorption energy (1.20 eV) in P1 compared to IA28. The point group and N₂ bond length are given in each structure, the superscripts indicate the spin multiplicities. The zero-point vibration corrected energies (ΔH_{0K} in eV) of each structure are given.

Fig. S6 Total density of states (TDOS, black line) for (a) Nb_2^+ and (b) $Nb_2N_2^+$. Projected density of states (PDOS) of Nb (red line) and N₂ (purple line) are also given. In each panel, the HOMO position is indicated by the blue dotted line. The HOMO–LUMO energy gaps are also given. The orbital insets are shown to illustrate the bond interactions between the Nb_2^+ cluster and N₂. The corresponding orbital contribution for Nb and N are also presented.

References

- 1 K. Balasubramanian and X. L. Zhu, J. Chem. Phys., 2001, 114, 10375–10388.
- 2 A. Sevy, D. J. Matthew and M. D. Morse, J. Chem. Phys., 2018, 149, 044306.
- 3 Q. Wu and S. Yang, Int. J. Mass. Spectrom., 1999, 184, 57-65
- 4 K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure Constants of Diatomic Molecules, Van Nostrand, New York, 1979.
- 5 G. Herzberg, J. Mol. Spectrosc., 1970, 33, 147–163.