Electronic Supplementary Information

Structural study on a specific Li-ion ordered complex in dimethyl carbonate-based dual-cation electrolytes

Yu Chikaoka,^{a,b*} Tomoya Tashiro,^c Saki Sawayama,^c Ayana Kobayashi,^a Ayuna Matsumoto,^a Etsuro Iwama,^{a,b} Katsuhiko Naoi,^{a,b*} and Kenta Fujii ^{c*}

^a Department of Applied Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558, Japan

^b Global Innovation Research Organization, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588 Japan

^c Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan

*E-mail: chika@go.tuat.ac.jp / k-naoi@cc.tuat.ac.jp / k-fujii@yamaguchi-u.ac.jp

Details in MD simulations.

Data curation of the MD simulation was done at intervals of 0.1 ps during the last 500 ps, after which the X-ray weighted structure factors $S^{MD}(q)$ and the radial distribution functions $G^{MD}(q)$ were estimated. Based on previous studies, the OPLS-AA-based force fields that incorporate intermolecular Lennard–Jones (LJ) and coulombic interactions as well as intramolecular interactions of bond stretching, angle bending, and torsion of dihedral angles, were employed for DMC,^{1,2} SBP⁺,²⁻⁴ EMI⁺,⁵ and BF₄^{-.6} The partial charges for the DMC, SBP⁺, EMI⁺, and BF₄⁻⁻ were obtained from DFT calculations (ChelpG method, Fig. S1). The $S^{MD}(q)$ values were determined from the MD simulations trajectories using Eq. S-1.

$$S^{MD}(q) = \begin{cases} \frac{\sum_{i} \sum_{j} \left\{ \frac{n_{i}(n_{j}-1)f_{i}(q)f_{j}(q)}{N(N-1)} \right\}}{\left\{ \sum_{k} \left(\frac{n_{k}f_{k}(q)}{N} \right) \right\}^{2}} \int_{0}^{r_{max}} 4\pi r^{2} \rho_{0} \left(g_{ij}^{MD}(r) - 1 \right) \frac{\sin qr}{qr} dr + 1(i = j) \\ \frac{\sum_{i} \sum_{j} \left\{ \frac{2n_{i}n_{j}f_{i}(q)f_{j}(q)}{N^{2}} \right\}}{\left\{ \sum_{k} \left(\frac{n_{k}f_{k}(q)}{N} \right) \right\}^{2}} \int_{0}^{r_{max}} 4\pi r^{2} \rho_{0} \left(g_{ij}^{MD}(r) - 1 \right) \frac{\sin qr}{qr} dr + 1(i \neq j) \end{cases}$$
(S-1)

where r_{max} is the upper integration limit (25 Å), N is the total number of atoms within the cubic simulation box as defined by $N = \sum_k nk$, and $g^{MD}_{ij}(r)$ is the atom–atom pair correlation function for atoms *i* and *j*. $G^{MD}(q)$ was obtained from the calculated $S^{MD}(q)$ using an inverse Fourier transform.

Table S1. Compositions (number of salts and solvent), box lengths of the system, and densities (d) for MD simulations.

Sample	Li-BF ₄	SBP-BF ₄ (or EMIBF ₄)	DMC	Box length / Å	$d / \text{g cm}^{-3}$		$c_{ m Li}$ / mol dm ⁻³	$c_{ m SBP}$ / mol dm ⁻³
					MD	Exp.		
1.0 M LiBF ₄ /DMC	200	_	2252	68.75	1.142	1.143	1.0	-
2.0 M SBPBF ₄ /DMC	_	400	1630	69.62	1.142	1.143	-	2.0
*1 M SBPBF ₄ /DMC with 0.4 M LiBF ₄	120	300	1644	68.21	1.163	1.159	0.6	1.6
1 M SBPBF ₄ /DMC with 1 M LiBF ₄	190	190	1900	68.96	1.166	1.155	1.0	1.0
neat EMIBF ₄	-	512	-	51.80	1.218	1.29	-	-

* Bottom phase of 1.0 M SBPBF4/DMC with 0.4 M LiBF4, corresponding to 1.6 M SBPBF4/DMC with 0.6 M LiBF4

Figure S1. Partial charges of (a) SBP⁺, (b) BF₄⁻, (c) DMC, and (d) EMI⁺ calculated DFT calculations [ChelpG method: MP2/cc-pVTZ(-f)//HF/6-31G(d)].

Figure S2. (a) S(q) and (b) $r^2[G(r) - 1]$ obtained by HEXTS measurements (open black circles) and MD simulations (solid red lines) for 1.0 M LiBF₄/DMC.

Figure S3. (a) S(q) and (b) $r^2[G(r) - 1]$ obtained by HEXTS measurements (open black circles) and MD simulations (solid red lines) for 2.0 M SBPBF₄/DMC.

Figure S4. (a) S(q) and (b) $r^2[G(r) - 1]$ obtained by HEXTS measurements (open black circles) and MD simulations (solid red lines) for 1.6 M SBPBF₄/DMC with 0.6 M LiBF₄, corresponding to the bottom phase of 1.0 M SBPBF₄/DMC solution with 0.4 M LiBF₄.

Figure S5. The $r^2[G^{MD}(r) - 1]$ functions for cation-anion correlations in (a) 2 M SBPBF₄/DMC (SBP⁺–BF₄⁻ correlation) and (b) neat EMIBF₄ (EMI⁺–BF₄⁻ correlation). Note that SBP⁺ and EMI⁺ cations have similar molar volumes, 105.1 cm³ mol⁻¹ and 97.2 cm³ mol⁻¹, respectively. It has been established that in popular ionic liquids, cations and anions electrostatically interact with each other to form a highly ionic ordered structure, resulting in clear periodic correlations in *G*(*r*) function,^{7, 8} as shown in Fig. S5b (EMIBF₄ ionic liquid, in this work). Similar periodic correlations were observed in the 2 M SBPBF₄/DMC system (Fig. S5a), indicating loosely structured SBP⁺–BF₄⁻ aggregates in the DMC solution. We expect that the formation of ionic aggregates is the molecular origin of the specific phase separation in the SBPBF₄/DMC system.

References

- 1. J. C. Soetens, C. Millot and B. Maigret, *Journal of Physical Chemistry A*, 1998, **102**, 1055-1061.
- 2. W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, *Journal of the American Chemical Society*, 1996, **118**, 11225-11236.
- 3. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, *Journal of the American Chemical Society*, 1995, **117**, 5179-5197.
- 4. J. N. Canongia Lopes and A. A. Padua, *The Journal of Physical Chemistry B*, 2006, **110**, 19586-19592.
- 5. J. N. Canongia Lopes, J. Deschamps and A. A. Pádua, *The Journal of Physical Chemistry B*, 2004, **108**, 2038-2047.
- 6. Z. Liu, S. Huang and W. Wang, *The Journal of Physical Chemistry B*, 2004, **108**, 12978-12989.
- 7. K. Fujii, R. Kanzaki, T. Takamuku, Y. Kameda, S. Kohara, M. Kanakubo, M. Shibayama, S. Ishiguro and Y. Umebayashi, *Journal of Chemical Physics*, 2011, **135**, 244502.
- 8. K. Fujii, S. Kohara and Y. Umebayashi, *Physical Chemistry Chemical Physics*, 2015, 17, 17838-17843.