Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supplementary Information

Unravelling the molecular interactions behind the formation of PEG/PPG aqueous two-phase systems

Alexandre M. S. Jorge^{a†}, Gonçalo M. C. Silva^{b†}, João A. P. Coutinho^{b*}, Jorge F.B. Pereira^{a *}

^a University of Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal

^b Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, 3810-193, Portugal

[†] Alexandre M. S. Jorge and Gonçalo M. C. Silva contributed equally to this work.

*e-mail: jcoutinho@ua.pt; jfbpereira@eq.uc.pt

Experimental Data

	298K		323K							
PEG600	PPG400	H ₂ O	PEG600	PPG400	H ₂ O	PEG600	PPG400	H ₂ O		
(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)		
53.56	12.06	34.39	17.60	64.53	17.86	9.93	16.72	73.35		
45.86	12.22	41.93	19.24	62.03	18.74	7.04	18.64	74.31		
43.25	12.40	44.35	26.55	52.93	20.52	8.55	73.67	17.78		
41.95	13.33	44.73	28.35	50.53	21.11	6.89	74.22	18.89		
40.14	13.62	46.24	31.29	46.61	22.10	5.73	74.41	19.86		
28.43	20.26	51.31	34.55	42.72	22.74	2.77	20.54	76.69		
22.45	26.95	50.59	36.86	39.73	23.41	2.26	20.16	77.58		
19.86	31.32	48.82	39.00	36.95	24.05	0.00	23.88	76.12		
16.43	39.36	44.20	40.82	34.59	24.59	0.00	52.05	47.95		
14.85	44.66	40.49	42.38	32.62	25.01	1.79	63.66	34.54		
13.66	48.34	38.00	43.93	30.69	25.38	3.54	71.47	24.99		
11.12	54.86	34.02	45.06	29.06	25.88	0.00	20.74	79.26		
9.96	58.53	31.51	46.89	26.40	26.72	1.33	56.99	41.67		
8.65	62.32	29.03	48.21	24.31	27.48					
6.92	68.74	24.34	50.38	20.99	28.64					
58.97	17.04	23.99	51.48	17.52	31.00					
53.59	25.63	20.78	51.68	15.69	32.63					
38.60	44.17	17.22	51.85	13.73	34.42					
44.65	36.88	18.47	50.39	11.73	37.88					
48.85	31.86	19.28	37.97	9.86	52.17					
28.24	56.71	15.05	35.33	10.51	54.16					
21.14	64.67	14.19	32.61	10.72	56.68					
14.39	72.29	13.32	29.60	11.54	58.86					
11.37	74.69	13.94	40.49	9.98	49.53					
8.62	76.33	15.04	32.34	10.49	57.17					
7.09	76.83	16.08	27.82	11.80	60.39					
57.75	18.85	23.40	22.02	12.90	65.08					
59.45	14.83	25.72	18.12	13.81	68.07					
59.86	12.86	27.28	14.53	14.90	70.57					

Table S1. Binodal curve data obtained in this study at 298K and 323K, in weight percentage (wt%).

	298K		323K							
DEC(00 (PPG400	H ₂ O	PEG600	PPG400	H ₂ O	PEG600	PPG400	H ₂ O		
PEG000 (W1%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)		
13.00	72.00	15.00	0.00	70.00	30.00	0.00	25.00	75.00		
20.00	64.00	16.00	4.00	71.00	25.00	0.00	33.00	67.00		
25.00	60.00	15.00	8.00	70.00	22.00	0.00	40.00	60.00		
29.00	54.00	17.00	12.00	68.00	20.00	0.00	48.00	52.00		
32.00	49.00	19.00	17.00	63.00	20.00	0.00	56.00	44.00		
37.00	44.00	19.00	20.00	59.00	21.00	0.00	62.00	38.00		
39.00	40.00	21.00	25.00	55.00	20.00					
44.00	35.00	21.00	28.00	49.00	23.00					
47.00	31.00	22.00	31.00	45.00	24.00					
50.00	27.00	23.00	35.00	41.00	24.00					
54.00	23.00	23.00	38.00	38.00	24.00					
56.00	19.00	25.00	40.00	32.00	28.00					
54.00	15.00	31.00	42.00	28.00	30.00					
49.00	14.00	37.00	45.00	25.00	30.00					
42.00	13.00	45.00	48.00	21.00	31.00					
36.00	16.00	48.00	47.00	15.00	38.00					
32.00	18.00	50.00	41.00	12.00	47.00					
29.00	20.00	51.00	31.00	12.00	57.00					
27.00	22.00	51.00	26.00	13.00	61.00					
25.00	25.00	50.00	21.00	13.00	66.00					
23.00	29.00	48.00	18.00	13.00	69.00					
20.00	32.00	48.00	13.00	13.00	74.00					
20.00	37.00	43.00	11.00	13.00	76.00					
17.00	42.00	41.00	9.00	14.00	77.00					
15.00	46.00	39.00	5.00	14.00	81.00					
10.00	59.00	31.00	3.00	16.00	81.00					
6.00	69.00	25.00	2.00	17.00	81.00					
8.00	72.00	20.00	1.00	18.00	81.00					
			0.00	20.00	80.00					

Table S2. Binodal curve data retrieved for Malmsten et al. ¹² at 298K and 323K, in weight percentage (wt%).

	298K		323К						
PEG600	PPG400	H ₂ O	PEG600	PPG400	H ₂ O	PEG600	PPG400	H ₂ O	
(mol%)	(mol%)	(mol%)	(mol%)	(mol%)	(mol%)	(mol%)	(mol%)	(mol%)	
4.40	1.48	94.12	2.48	13.64	83.88	0.40	1.01	98.59	
3.14	1.25	95.61	2.61	12.63	84.76	0.28	1.11	98.61	
2.81	1.21	95.98	3.36	10.05	86.59	1.20	15.52	83.28	
2.70	1.29	96.01	3.51	9.38	87.11	0.92	14.88	84.20	
2.51	1.28	96.22	3.73	8.34	87.92	0.74	14.32	84.94	
1.61	1.72	96.68	4.03	7.48	88.48	0.11	1.19	98.70	
1.28	2.31	96.41	4.20	6.80	89.00	0.09	1.16	98.76	
1.17	2.77	96.05	4.35	6.18	89.46	0.00	1.39	98.61	
1.06	3.81	95.13	4.47	5.69	89.84	0.00	4.66	95.34	
1.04	4.68	94.28	4.58	5.29	90.13	0.14	7.65	92.21	
1.01	5.36	93.63	4.69	4.92	90.39	0.38	11.36	88.26	
0.91	6.70	92.39	4.74	4.58	90.68	0.00	1.16	98.84	
0.87	7.65	91.49	4.80	4.05	91.15	0.09	5.79	94.12	
0.81	8.74	90.45	4.82	3.64	91.54				
0.75	11.19	88.06	4.86	3.04	92.10				
6.67	2.89	90.44	4.63	2.37	93.00				
6.83	4.90	88.27	4.44	2.02	93.53				
5.69	9.76	84.55	4.25	1.69	94.06				
6.24	7.73	86.03	3.79	1.32	94.89				
6.61	6.46	86.93	2.12	0.83	97.06				
4.59	13.83	81.57	1.90	0.85	97.25				
3.58	16.41	80.01	1.68	0.83	97.49				
2.54	19.14	78.32	1.47	0.86	97.66				
1.93	19.05	79.02	2.37	0.88	96.75				
1.38	18.33	80.29	1.66	0.81	97.54				
1.08	17.50	81.42	1.35	0.86	97.79				
6.67	3.27	90.06	1.00	0.88	98.13				
6.33	2.37	91.30	0.79	0.90	98.32				
6.06	1.95	91.99	0.61	0.94	98.46				

Table S3. Binodal curve data obtained in this study at 298K and 323K, in mol fraction (mol%).

	PEG600/H ₂ O							PPG400/H ₂ O					
X _W	Total H ^E	H ^E (MF)	H ^E (HB)	H ^E VDW)	Total G ^E	γ	Total H ^E	H ^E (MF)	H ^E (HB)	H ^E VDW)	Total G ^E	γ	
1.00E-08	0.0000	0.0000	0.0000	0.0000	0.0000	0.2677	0.0000	0.0000	0.0000	0.0000	0.0000	1.5376	
1.00E-05	0.0000	0.0000	0.0000	0.0000	0.0000	0.2677	0.0000	0.0000	0.0000	0.0000	0.0000	1.5376	
0.001	-0.0013	-0.0002	-0.0010	-0.0001	-0.0008	0.2679	-0.0003	0.0002	-0.0005	-0.0001	0.0003	1.5347	
0.01	-0.0128	-0.0018	-0.0103	-0.0006	-0.0078	0.2693	-0.0036	0.0018	-0.0046	-0.0007	0.0025	1.5097	
0.02	-0.0257	-0.0037	-0.0207	-0.0012	-0.0155	0.2708	-0.0075	0.0034	-0.0095	-0.0015	0.0049	1.4840	
0.05	-0.0644	-0.0093	-0.0520	-0.0031	-0.0386	0.2756	-0.0213	0.0078	-0.0254	-0.0037	0.0115	1.4172	
0.1	-0.1299	-0.0190	-0.1048	-0.0062	-0.0763	0.2842	-0.0487	0.0136	-0.0550	-0.0073	0.0207	1.3315	
0.15	-0.1964	-0.0288	-0.1583	-0.0093	-0.1129	0.2936	-0.0799	0.0180	-0.0868	-0.0110	0.0281	1.2672	
0.2	-0.2640	-0.0390	-0.2126	-0.0124	-0.1484	0.3037	-0.1132	0.0213	-0.1199	-0.0146	0.0340	1.2177	
0.25	-0.3325	-0.0494	-0.2676	-0.0155	-0.1826	0.3149	-0.1476	0.0239	-0.1533	-0.0182	0.0385	1.1789	
0.3	-0.4020	-0.0602	-0.3233	-0.0186	-0.2153	0.3272	-0.1822	0.0260	-0.1863	-0.0219	0.0419	1.1482	
0.35	-0.4723	-0.0711	-0.3796	-0.0216	-0.2463	0.3409	-0.2159	0.0277	-0.2182	-0.0254	0.0443	1.1241	
0.4	-0.5434	-0.0824	-0.4364	-0.0247	-0.2754	0.3562	-0.2480	0.0293	-0.2483	-0.0290	0.0458	1.1054	
0.45	-0.6150	-0.0938	-0.4935	-0.0277	-0.3022	0.3735	-0.2777	0.0309	-0.2760	-0.0325	0.0466	1.0911	
0.5	-0.6869	-0.1055	-0.5506	-0.0307	-0.3264	0.3932	-0.3039	0.0326	-0.3004	-0.0360	0.0468	1.0807	
0.55	-0.7584	-0.1173	-0.6074	-0.0337	-0.3473	0.4158	-0.3256	0.0346	-0.3207	-0.0394	0.0465	1.0735	
0.6	-0.8289	-0.1290	-0.6632	-0.0367	-0.3644	0.4423	-0.3415	0.0370	-0.3357	-0.0428	0.0458	1.0690	
0.65	-0.8970	-0.1406	-0.7169	-0.0396	-0.3767	0.4737	-0.3502	0.0400	-0.3442	-0.0460	0.0449	1.0668	
0.7	-0.9606	-0.1515	-0.7666	-0.0424	-0.3827	0.5119	-0.3499	0.0437	-0.3445	-0.0491	0.0440	1.0662	
0.75	-1.0156	-0.1612	-0.8092	-0.0451	-0.3805	0.5593	-0.3385	0.0482	-0.3347	-0.0520	0.0430	1.0663	
0.8	-1.0544	-0.1682	-0.8385	-0.0477	-0.3669	0.6202	-0.3131	0.0533	-0.3120	-0.0544	0.0420	1.0657	
0.85	-1.0613	-0.1698	-0.8418	-0.0498	-0.3362	0.7012	-0.2706	0.0588	-0.2732	-0.0561	0.0407	1.0623	
0.9	-0.9989	-0.1589	-0.7890	-0.0510	-0.2782	0.8120	-0.2071	0.0627	-0.2137	-0.0562	0.0381	1.0523	
0.95	-0.7636	-0.1167	-0.5981	-0.0488	-0.1714	0.9528	-0.1195	0.0586	-0.1271	-0.0510	0.0306	1.0298	
0.98	-0.4202	-0.0569	-0.3241	-0.0391	-0.0703	1.0098	-0.0551	0.0400	-0.0579	-0.0372	0.0180	1.0089	
0.99	-0.2395	-0.0288	-0.1819	-0.0288	-0.0323	1.0078	-0.0308	0.0253	-0.0308	-0.0253	0.0105	1.0026	
0.999	-0.0279	-0.0027	-0.0204	-0.0049	-0.0026	1.0002	-0.0038	0.0033	-0.0033	-0.0037	0.0012	1.0000	
0.99999	-0.0003	0.0000	-0.0002	-0.0001	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	
0.99999999	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	

Table S4.	Thermo	dynamic propert	ties of the b	oinary sy	stems PEG60	0/H ₂ O and PPC	6400/H ₂ O	as function	of water m	olar fraction	$(\mathbf{x}_{\mathrm{W}})$. H^{E} (N	$(1F), H^{E}$	HB) and I	H ^E (VDW)
correspond	to the e	excess enthalpy of	of the binar	y mixtur	e caused by n	nisfit/electrostat	ic interact	tions, hydrog	en bonds a	nd Van der V	Waals forces,	, respectiv	vely. "Tot	al H ^E " and
"Total	G ^E "	correspond	to	the	excess	enthalpy	and	excess	free	Gibbs	energy	of	the	system.

Figure S1. Experimental phase diagrams of PEG600/PPG400/H₂O at 298K (**a**) and 323K (**b**), and atmospheric pressure. The full circles correspond to the experimental data of this study and the full triangles the data retrieved from Malmsten et al.¹² by manual drawing and eye assessment of the mixture points within the equilibrium curve.

S2. Simulation Results

Figure S2. Snapshots from MD simulations of the binary systems containing 1:1 mass ratio of PEG600 and H_2O (**a** and **c**), and PPG400 and H_2O (**c** and **d**), at 273 K and 348 K. PEG600, PPG400 and water are represented by red, green and blue colors, respectively.

Figure S3. Radial distribution functions between the polymeric moieties obtained from MD simulations of the binary systems containing 1:1 mass ratio of PEG600 and H_2O (**a**), and PPG400 and H_2O (**b**), at 273 K (solid lines) and 348 K (dashed lines). The red and green curves correspond to PEG600-PEG600 and PPG400-PPG400 pairs, respectively.

Figure S4. Evolution of the total potential energy throughout the time length of each simulation.

S3. Simulation Details

Figure S5. Molecular structure of PEG600 ($C_{26}H_{54}O_{14}$) and PPG400 ($C_{21}H_{44}O_8$). Color scheme: hydrogen – white, carbon – gray and oxygen – red.

System	PEG600	PPG400	H ₂ O
$x_W=0$	300	300	0
$x_W = 0.8$	300	300	2400
x _w =0.94	300	300	9400
PEG600/H ₂ O	300	0	10000
PEG600/H ₂ O	0	300	7100

Table S5. Number of molecules used in the simulations boxes for each system.

The input files, including topology, coordinate and control files can be found on the following repository: <u>https://github.com/goncalosilva20/PEG600_PPG400_Water</u>.