Supporting information

Enhancing Catalytic Activity of Cr₂O₃ in CO₂-assisted Propane Dehydrogenation with Effective Dopant Engineering: A DFT-Based Microkinetic Simulation

Faheem Jan^{1,2}, Shuaike Zhi^{1,2}, XiaoYing Sun³* and Bo Li³*

¹Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China.

²School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China.

³Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China.

Figure S1 Reaction path for the cracking of C₃H₈ to CH₃ and C₂H₅.

Figure S2 Deep dehydrogenation of C₃H₆ to C₃H₅.

Figure S3 Deep dehydrogenation of C₃H₅ to C₃H₄.

Figure S4 Adsorption energies of propane molecule on Cr₂O₃ and M-Cr₂O₃ surfaces.

Figure S5. Formation of C_3H_7 specie on all surface.

Figure S6. The physisorption of CO₂ molecule on M-Cr₂O₃ surfaces.

Figure S7. Physisorption adsorption of propane molecule on doped catalytic surfaces.

Figure S8. Removal of H-atoms from catalytic surfaces.

Surfaces	Formation energy
Ge-Cr ₂ O ₃	-2.04
Ir-Cr ₂ O ₃	-0.52
Ni-Cr ₂ O ₃	-2.06
Sn-Cr ₂ O ₃	-1.92
Zn-Cr ₂ O ₃	-1.36
Zr-Cr ₂ O ₃	-2.06

Table S1 Formation energies of M-Cr₂O₃ surfaces.

Reactions	DRC						
	Ge	Ir	Ni	Sn	Zn	Zr	Cr
$CH_3CH_2CH_3* + * \rightarrow$							
$CH_3CHCH_3* + H*$	8.95E-01	9.95E-01	9.91E-01	9.73E-01	9.82E-01	3.74E-02	9.41E-01
$CH_3CHCH_3* + * \rightarrow$							
$CH_3CHCH_2* + H*$	6.99E-02	3.54E-03	6.31E-03	1.79E-02	1.17E-02	6.42E-01	3.91E-02
$\mathbf{H}^{*} + \mathbf{H}^{*} \rightarrow \mathbf{H}_{2}^{*} + ^{*}$							
	3.50E-02	1.77E-03	3.17E-03	8.93E-03	5.85E-03	3.21E-01	1.96E-02
$\sum xi$	1.00E+00						

Table S2. The DRC analysis without the CO₂ molecule.

Table S3. The DRC analysis with CO₂ molecule.

Reactions	DRC						
	Ge	Ir	Ni	Sn	Zn	Zr	Cr
$CH_3CH_2CH_3* + * \rightarrow$							
$CH_3CHCH_3* + H*$	1.00E+00	1.00E+00	1.00E+00	1.00E+00	9.99E-01	9.91E-01	9.08E-01
$CH_3CHCH_3* + * \rightarrow$							
CH3CHCH2* + H*	1.82E-04	4.34E-06	2.35E-07	1.28E-07	3.59E-04	5.97E-03	6.13E-02
$\mathbf{H}^{*} + \mathbf{H}^{*} \mathbf{H}_{2}^{*} + ^{*}$	1.32E-04	2.25E-06	4.30E-06	1.04E-07	2.07E-04	3.20E-03	3.07E-02
$CO_2^* + * \rightarrow CO^* + O^*$	1.06E-14	3.55E-16	-1.29E-13	-1.78E-16	5.68E-13	5.87E-11	4.44E-16
$CH_{3}CH_{2}CH_{3}^{*} + O^{*} \rightarrow CH_{3}CHCH_{3}^{*} + OH^{*}$							
	1.06E-14	3.55E-16	4.61E-13	-1.78E-16	6.48E-13	5.86E-11	4.44E-16
$CH_3CHCH_3^* + OH^* \rightarrow$							
$CH_3CHCH_2* + H_2O*$	1.06E-14	4.56E-14	4.99E-13	-1.78E-16	5.42E-13	5.86E-11	2.72E-14
$\sum_{i} xi$	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00

Table S4. The rate constant for the elementary steps.

Reactions	Rate constant	
*Cr ₂ O ₃ surface	<i>k</i> _{fwd}	<i>k</i> _{bwd}
$CO_2 + * \rightarrow CO_2 *$	1.40E+07	3.17E+17
$CH_3CH_2CH_3 * \rightarrow CH_3CH_2CH_3*$	1.40E+07	5.89E+10
$CH_3CHCH_2^* \rightarrow CH_3CHCH_2 + *$	1.44E+08	7.24E+17
$H_2O^* \rightarrow H_2O + *$	2.20E+08	1.46E+18
$CH_3CH_2CH_3* + * \rightarrow CH_3CHCH_3* + H*$	1.03E+02	2.71E+11
$CH_3CHCH_3* + * \rightarrow CH_3CHCH_2* + H*$	4.39E+05	5.60E+09
$\mathrm{H}^{*} + \mathrm{H}^{*} \mathrm{H}_{2}^{*} + ^{*}$	1.22E+09	5.92E-01
$\mathrm{CO}_2^* + * \rightarrow \mathrm{CO}^* + \mathrm{O}^*$	3.82E+06	1.75E+11
$CH_3CH_2CH_3^* + O^* \rightarrow CH_3CHCH_3^* + H^*$	1.48E+04	2.71E+11
$CH_{3}CHCH_{3}^{*} + OH^{*} \rightarrow CH_{3}CHCH_{2}^{*} + H_{2}O^{*}$	2.91E+05	5.60E+09

*Ge-Cr ₂ O ₃		
$CO_2 + * \rightarrow CO_2 *$	1.36E+07	4.16E+17
$CH_3CH_2CH_3 * \rightarrow CH_3CH_2CH_3*$	1.36E+07	1.97E+17
$CH_3CHCH_2* \rightarrow CH_3CHCH_2 + *$	1.39E+08	9.93E+17
$H_2O^* \rightarrow H_2O + *$	2.13E+08	1.92E+18
$CH_{3}CH_{2}CH_{3}* + * \rightarrow CH_{3}CHCH_{3}* + H*$	1.81E+09	3.45E+11
$CH_3CHCH_3* + * \rightarrow CH_3CHCH_2* + H*$	2.56E+09	4.53E+12
$\mathbf{H}^{*} + \mathbf{H}^{*} \mathbf{H}_{2}^{*} + ^{*}$	2.13E+09	3.66E+00
$CO_2^* + * \rightarrow CO^* + O^*$	4.93E+08	2.29E+11
$CH_3CH_2CH_3^* + O^* \rightarrow CH_3CHCH_3^* + H^*$	7.65E+08	3.45E+11
$CH_{3}CHCH_{3}^{*} + OH^{*} \rightarrow CH_{3}CHCH_{2}^{*} + H_{2}O^{*}$	5.31E+09	8.97E+09
*Ir-Cr ₂ O ₃		
$CO_2 + * \rightarrow CO_2^*$	1.40E+07	3.17E+17
$CH_3CH_2CH_3 * \rightarrow CH_3CH_2CH_3*$	1.40E+07	1.08E+14
$CH_3CHCH_2* \rightarrow CH_3CHCH_2 + *$	1.44E+08	7.24E+17
$H_2O^* \rightarrow H_2O + *$	2.20E+08	1.46E+18
$CH_{3}CH_{2}CH_{3}* + * \rightarrow CH_{3}CHCH_{3}* + H*$	1.46E+05	2.71E+11
$CH_{3}CHCH_{3}* + * \rightarrow CH_{3}CHCH_{2}* + H*$	1.47E+09	5.60E+09
$\mathbf{H}^{*} + \mathbf{H}^{*} \mathbf{H}_{2}^{*} + ^{*}$	9.21E+12	5.92E-01
$CO_2^* + * \rightarrow CO^* + O^*$	9.97E+07	1.75E+11
$CH_3CH_2CH_3^* + O^* \rightarrow CH_3CHCH_3^* + H^*$	4.91E+08	2.71E+11
$CH_3CHCH_3^* + OH^* \rightarrow CH_3CHCH_2^* + H_2O^*$	2.84E+10	5.60E+09
*Ni-Cr ₂ O ₃		
$CO_2 + * \rightarrow CO_2 *$	1.29E+07	6.73E+17
$CH_3CH_2CH_3 * \rightarrow CH_3CH_2CH_3*$	1.29E+07	3.36E+16
$CH_3CHCH_2* \rightarrow CH_3CHCH_2 + *$	1.32E+08	1.74E+18
$H_2O^* \rightarrow H_2O + *$	2.01E+08	3.11E+18
$CH_{3}CH_{2}CH_{3}* + * \rightarrow CH_{3}CHCH_{3}* + H*$	6.33E+08	5.19E+11
$CH_{3}CHCH_{3}* + * \rightarrow CH_{3}CHCH_{2}* + H*$	1.67E+13	5.20E+12
$\mathbf{H}^{*} + \mathbf{H}^{*} \mathbf{H}_{2}^{*} + ^{*}$	5.48E+09	7.88E+01
$CO_2^* + * \rightarrow CO^* + O^*$	6.66E+08	3.60E+11
$CH_{3}CH_{2}CH_{3}^{*} + O^{*} \rightarrow CH_{3}CHCH_{3}^{*} + H^{*}$	3.41E+10	5.19E+11
$CH_{3}CHCH_{3}^{*} + OH^{*} \rightarrow CH_{3}CHCH_{2}^{*} + H_{2}O^{*}$	7.16E+12	1.98E+10
*Sn-Cr ₂ O ₃		
$CO_2 + * \rightarrow CO_2 *$	1.40E+07	3.17E+17
$CH_3CH_2CH_3 * \rightarrow CH_3CH_2CH_3*$	1.40E+07	2.65E+11
$CH_3CHCH_2^* \rightarrow CH_3CHCH_2 + *$	1.44E+08	7.24E+17
$H_2O^* \rightarrow H_2O + *$	2.20E+08	1.46E+18
$CH_{3}CH_{2}CH_{3}* + * \rightarrow CH_{3}CHCH_{3}* + H*$	5.59E-03	2.71E+11
$CH_{3}CHCH_{3}* + * \rightarrow CH_{3}CHCH_{2}* + H*$	5.59E+10	4.18E+12
$\mathbf{H}^{*} + \mathbf{H}^{*} \mathbf{H}_{2}^{*} + ^{*}$	1.22E+09	5.92E-01
$CO_2^* + * \rightarrow CO^* + O^*$	9.97E+07	1.75E+11
$CH_{3}CH_{2}CH_{3}^{*} + O^{*} \rightarrow CH_{3}CHCH_{3}^{*} + H^{*}$	6.83E+08	2.71E+11
$CH_{3}CHCH_{3}^{*} + OH^{*} \rightarrow CH_{3}CHCH_{2}^{*} + H_{2}O^{*}$	1.67E+13	1.11E+13
*Zn-Cr ₂ O ₃		
$CO_2 + * \rightarrow CO_2 *$	1.36E+07	4.16E+17

$CH_3CH_2CH_3 * \rightarrow CH_3CH_2CH_3 *$	1.36E+07	1.54E+16
$CH_3CHCH_2* \rightarrow CH_3CHCH_2 + *$	1.39E+08	9.93E+17
$H_2O^* \rightarrow H_2O + *$	2.13E+08	1.92E+18
$CH_3CH_2CH_3* + * \rightarrow CH_3CHCH_3* + H*$	9.25E+06	3.45E+11
$CH_3CHCH_3* + * \rightarrow CH_3CHCH_2* + H*$	1.81E+08	4.53E+12
$\mathrm{H}^{*} + \mathrm{H}^{*} \mathrm{H}_{2}^{*} + ^{*}$	2.13E+09	3.66E+00
$\text{CO}_2^* + * \rightarrow \text{CO}^* + \text{O}^*$	2.02E+08	2.29E+11
$CH_{3}CH_{2}CH_{3}* + O* \rightarrow CH_{3}CHCH_{3}* + H*$	1.56E+07	3.45E+11
$CH_{3}CHCH_{3}^{*} + OH^{*} \rightarrow CH_{3}CHCH_{2}^{*} + H_{2}O^{*}$	1.01E+04	8.97E+09
*Zr-Cr ₂ O ₂		
$CO_2 + * \rightarrow CO_2^*$	1.36E+07	4.16E+17
$CO_2 + * \rightarrow CO_2 *$ $CH_3CH_2CH_3 * \rightarrow CH_3CH_2CH_3 *$	1.36E+07 1.36E+07	4.16E+17 2.21E+14
$CO_{2} + * \rightarrow CO_{2}*$ $CH_{3}CH_{2}CH_{3} * \rightarrow CH_{3}CH_{2}CH_{3}*$ $CH_{3}CHCH_{2}* \rightarrow CH_{3}CHCH_{2} + *$	1.36E+07 1.36E+07 1.39E+08	4.16E+17 2.21E+14 9.93E+17
$CO_{2} + * \rightarrow CO_{2}*$ $CH_{3}CH_{2}CH_{3} * \rightarrow CH_{3}CH_{2}CH_{3}*$ $CH_{3}CHCH_{2}* \rightarrow CH_{3}CHCH_{2} + *$ $H_{2}O^{*} \rightarrow H_{2}O + *$	1.36E+07 1.36E+07 1.39E+08 2.13E+08	4.16E+17 2.21E+14 9.93E+17 1.92E+18
$CO_{2} + * \rightarrow CO_{2}*$ $CH_{3}CH_{2}CH_{3} * \rightarrow CH_{3}CH_{2}CH_{3}*$ $CH_{3}CHCH_{2}* \rightarrow CH_{3}CHCH_{2} + *$ $H_{2}O^{*} \rightarrow H_{2}O + *$ $CH_{3}CH_{2}CH_{3}* + * \rightarrow CH_{3}CHCH_{3}* + H^{*}$	1.36E+07 1.36E+07 1.39E+08 2.13E+08 2.05E+04	4.16E+17 2.21E+14 9.93E+17 1.92E+18 3.45E+11
$CO_{2} + * \rightarrow CO_{2}*$ $CH_{3}CH_{2}CH_{3} * \rightarrow CH_{3}CH_{2}CH_{3}*$ $CH_{3}CHCH_{2}* \rightarrow CH_{3}CHCH_{2} + *$ $H_{2}O^{*} \rightarrow H_{2}O + *$ $CH_{3}CH_{2}CH_{3}* + * \rightarrow CH_{3}CHCH_{3}* + H^{*}$ $CH_{3}CHCH_{3}* + * \rightarrow CH_{3}CHCH_{2}* + H^{*}$	1.36E+07 1.36E+07 1.39E+08 2.13E+08 2.05E+04 1.56E+06	4.16E+17 2.21E+14 9.93E+17 1.92E+18 3.45E+11 4.53E+12
$CO_{2} + * \rightarrow CO_{2}*$ $CH_{3}CH_{2}CH_{3} * \rightarrow CH_{3}CH_{2}CH_{3}*$ $CH_{3}CHCH_{2}* \rightarrow CH_{3}CHCH_{2} + *$ $H_{2}O^{*} \rightarrow H_{2}O + *$ $CH_{3}CH_{2}CH_{3}* + * \rightarrow CH_{3}CHCH_{3}* + H^{*}$ $CH_{3}CHCH_{3}* + * \rightarrow CH_{3}CHCH_{2}* + H^{*}$ $H^{*} + H^{*} \rightarrow H_{2}* + *$	1.36E+07 1.36E+07 1.39E+08 2.13E+08 2.05E+04 1.56E+06 2.13E+09	4.16E+17 2.21E+14 9.93E+17 1.92E+18 3.45E+11 4.53E+12 3.66E+00
$CO_{2} + * \rightarrow CO_{2}*$ $CH_{3}CH_{2}CH_{3} * \rightarrow CH_{3}CH_{2}CH_{3}*$ $CH_{3}CHCH_{2}* \rightarrow CH_{3}CHCH_{2} + *$ $H_{2}O^{*} \rightarrow H_{2}O + *$ $CH_{3}CH_{2}CH_{3}* + * \rightarrow CH_{3}CHCH_{3}* + H^{*}$ $CH_{3}CHCH_{3}* + * \rightarrow CH_{3}CHCH_{2}* + H^{*}$ $H^{*} + H^{*} \rightarrow H_{2}* + *$ $CO_{2}* + * \rightarrow CO^{*} + O^{*}$	1.36E+07 1.36E+07 1.39E+08 2.13E+08 2.05E+04 1.56E+06 2.13E+09 2.02E+08	4.16E+17 2.21E+14 9.93E+17 1.92E+18 3.45E+11 4.53E+12 3.66E+00 2.29E+11
$CO_{2} + * \rightarrow CO_{2}*$ $CH_{3}CH_{2}CH_{3} * \rightarrow CH_{3}CH_{2}CH_{3}*$ $CH_{3}CHCH_{2}* \rightarrow CH_{3}CHCH_{2} + *$ $H_{2}O^{*} \rightarrow H_{2}O + *$ $CH_{3}CH_{2}CH_{3}* + * \rightarrow CH_{3}CHCH_{3}* + H^{*}$ $CH_{3}CHCH_{3}* + * \rightarrow CH_{3}CHCH_{2}* + H^{*}$ $H^{*} + H^{*} \rightarrow H_{2}* + *$ $CO_{2}* + * \rightarrow CO^{*} + O^{*}$ $CH_{3}CH_{2}CH_{3}* + O^{*} \rightarrow CH_{3}CHCH_{3}* + H^{*}$	1.36E+07 1.39E+08 2.13E+08 2.05E+04 1.56E+06 2.13E+09 2.02E+08 3.81E+07	4.16E+17 2.21E+14 9.93E+17 1.92E+18 3.45E+11 4.53E+12 3.66E+00 2.29E+11 3.45E+11

References

[1]. Filot, I.A., Introduction to Microkinetic Modeling, Technische Universiteit Eindhoven, 2018.