Quantification alkalinity of Deep Eutectic Solvents based on (H_) and NMR

Rui Qin^a, Zeyu Wang^a, Chenyang Wei^a, Fengyi Zhou^a, Yurun Tian^a, Yu Chen^{b,*} and Tiancheng Mu^{a,*}

^a Department of Chemistry, Renmin University of China, Beijing 100872, China, E-mail: <u>tcmu@ruc.edu.cn</u>.

^b Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, P.R. China, E-mail: <u>yuchen@iccas.ac.cn</u>

Hydrazine (wt %)	H ₋ (reported)	H ₋ (measured)
15	11.93	11.85
20	12.29	12.17
25	12.72	12.56
30	13.15	12.94

Table S1. H₋ values for hydrazine aqueous solution measured in this work at room temperature and reported in the literature.

Machine learning details:

Herein, the Pearson correlation coefficient p were applied to evaluate the relevance between two features, which can be expressed as:

$$p = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i} (x_i - \overline{x})^2} \sqrt{\sum_{i} (y_i - y)^2}}$$

where x and y are two features and \overline{x} and \overline{y} are the mean values for all x and y. p value range from -1 to 1, and an absolute value close to 1 means a high linear relationship with two features.

Additionally, the coefficient of determination (R^2) and mean squared error (MSE)

were applied for all algorithms to evaluated the accuracy of ML models. R^2 reflects the prediction performance of a model and a high value close to 1 is required for an ideal model. MSE measures the difference between true and predicted values for all

entities and a small value to zero is desired. Here, R^2 can be expressed as followed:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{pred} - y_{true})^{2}}{\sum_{i=1}^{n} (y_{pred} - \overline{y}_{pred})^{2}}$$

while MSE can be expressed:

$$MSE = \frac{\sum_{i=1}^{n} (y_{pred} - y_{true})^2}{n}$$

where y_{pred} and y_{true} represent the predicted and true values, and y_{pred} stands for the average values of all y_{pred} .

Table S2. The key hyperparameters for each algorithm in our ML models applied for grid search (hyperparameters not mentioned were kept at their default values).

Algorithms	Hyperparameters
Random Forest Regression	n_estimators = [5, 10, 20, 50, 70, 100] max_depth = [5, 6, 7, 9, 10, 20] max_features = [0.6, 0.7, 1]
XGBoost Regression	n_estimators = [5, 10, 20, 50, 70, 100, 200] max_depth = [5, 6, 7, 8]

Table S3. The best hyperparameters for each algorithm in our ML models determined by ten-fold cross-validation (hyperparameters not mentioned were kept at their default values).

-

Algorithms	Hyperparameters
Random Forest Regression	n_estimators = 5
	max_depth = 9
	max_features = 0.7
XGBoost Regression	n_estimators = 20 max_depth = 5 max_delta_step = 1
Artificial Neural Network	-

Table S4. The mean squared error (MSE) and coefficient of determination (R^2) for different algorithm models.

	RF	XGB	ANN
MSE	1.864*10 ⁻⁵	1.929*10 ⁻⁵	5.401*10 ⁻⁵
R ²	0.977	0.976	0.934

Name	Components	Abbreviation
DES1	Choline chloride/Tetramethylguanidine/ethylene glycol	ChCl/TMG/EG
DES2	Choline chloride/Tetramethylguanidine/ Butyleneglycol	ChCl/TMG/BDO
DES3	Choline chloride/Tetramethylguanidine/ Poly(ethylene glycol)	ChCl/TMG/PEG
DES4	Choline chloride/ Ditolylguanidine /ethylene glycol	ChCl/DTG/EG
DES5	Choline chloride/ Ditolylguanidine / Butyleneglycol	ChCl/DTG/BDO
DES6	Choline chloride/ Ditolylguanidine / Poly(ethylene glycol)	ChCl/DTG/PEG
DES7	Choline chloride/ 1,3-Diphenylguanidine /ethylene glycol	ChCl/DPG/EG
DES8	Choline chloride/ 1,3-Diphenylguanidine / Butyleneglycol	ChCl/DPG/BDO
DES9	Choline chloride/ 1,3-Diphenylguanidine / Poly(ethylene glycol)	ChCl/DPG/PEG

Table S5. The synthetic guanidine DESs components and abbreviations.

Fig. S1. ¹H NMR spectra of guanidine-based system.

Fig. S2. a, b) The H₋ of various DESs when changing the molar ratio of components, X represents the alkaline component.

Fig. S3. a, b) Chemical shift of specific N-H protons of DPG and DTG molecules. c, d) the linear relationship between the chemical shift and H₋.

Fig. S4. CO_2 capture capacity of DESs with different molar ratio of components underdifferenttemperature(3040and50°C).

Fig. S6. Change the alcohol base composition, the CO_2 capture curves of various DESs with a molar ratio of control components of (1:3:5) at 40 °C. a), b) are BDO and PEG 200, respectively.

Fig. S7. FT-IR before and after CO_2 capture by Im-based DES.

Fig. S8. The linear relationship between the H₂ value of different DESs and the CO_2 capture amount, the reaction temperature is 40 °C

Fig. S9. SHAP feature importance for the testing data set of CO_2 capture in DESs.

Fig. S10. CO_2 absorption/desorption cycles of two type DESs. a) the mole ratio is ChCl:DBU:EG (1:3:5), b) the mole ratio is ChCl:Im:EG (1:3:5). The desorption temperature is 80 °C under N₂ bubble condition.

Fig. S11. CO_2 absorption/desorption cycles of three type DESs. a) the mole ratio is ChCl:DTG:EG (1:3:5), b) the mole ratio is ChCl:TMG:EG (1:3:5) and c) the mole ratio is ChCl:DPG:EG (1:3:5). The desorption temperature is 80 $^{\circ}$ C under N₂ bubble condition.

- 1 L. P. Hammett, *Chem. Rev.*, 1934, 67-79.
- 2 M. A. Paul and F. A. Long, *Chem. Rev.*, 1957, **57**, 1-45.
- 3 N. C. Deno, J. Am. Chem. Soc., 1952, 74, 2039-2041.
- 4 R. G. Bates and G. Schwarzenbach, *Helv. Chim. Acta*, 1955, **38**, 699-716.
- S. J. Broderius, M. D. Kahl and M. D. Hoglund, *Environ. Toxicol. Chem.*, 1995, 14, 1591 1605.