## **Electronic Supplementary Information (ESI)**

# Deciphering the photophysical properties of naphthalimide derivative using ultrafast spectroscopy

Wei Zhang,<sup>a</sup> Yalei Ma,<sup>b</sup> Hongwei Song,<sup>c</sup> Rong Miao,<sup>\*b</sup> Jie Kong,<sup>\*a</sup> Meng Zhou,<sup>\*a</sup>

<sup>a</sup>Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China

<sup>b</sup>Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China

<sup>c</sup>Department of Chemistry–Angstrom Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden

**Corresponding Author** 

- R. M. miaorong2015@snnu.edu.cn
- J. K. kongjie2021@ustc.edu.cn
- M.Z. mzhou88@ustc.edu.cn

### **S1. Discussion on Theoretical Calculations**

The optimization of S<sub>1</sub> state when varying the twist angle was not successful with selected long-range separated functional CAM-B3LYP<sup>[1]</sup> and PCM solvent model, i.e., no significant twist was obtained in acetonitrile. On the other hand, we employed the semi-empirical evaluation with PM7<sup>[2]</sup> Hamiltonian of MOPAC<sup>[3]</sup> (with solvent model COSMO) allowed to reproduce the twisted geometries of HP-NAP in polar environment, as showed in Figure S1. The results here are similar to previous reports.<sup>[4,5]</sup>



Fig. S1 The theoretical  $S_1$  results of HP-NAP at CAM-B3LYP and semi-empirical method (PM7 Hamiltonian of MOPAC, solvent model COSMO): the optimized geometries and FMOs.

#### **S2. Supplementary Results**

| solvent <sup>a</sup> | n      | 3     | Δf    | Abs<br>/nm | Ems<br>/nm | Stokes Shift<br>/cm <sup>-1</sup> |
|----------------------|--------|-------|-------|------------|------------|-----------------------------------|
| Hex                  | 1.372  | 1.9   | 0     | 395        | 460        | 3577                              |
| MX1                  | 1.388  | 4.75  | 0.167 | 416        | 511        | 4469                              |
| $CH_2CI_2$           | 1.4211 | 9.1   | 0.22  | 409        | 520        | 5219                              |
| THF                  | 1.404  | 7.6   | 0.21  | 419        | 528        | 4927                              |
| MX2                  | 1.373  | 22.55 | 0.28  | 417        | 544        | 5598                              |
| ACN                  | 1.342  | 37.5  | 0.31  | 412        | 550        | 6090                              |

Table S1. Stokes shift and solvent orientation polarizability comparison

a. MS1 represents mixed solvent of Hex and THF (v/v=1:1); MS2 represents mixed solvent of THF and ACN (v/v=1:1). The corresponding  $\varepsilon_{mix}$  and  $n_{mix}$  were calculated according to  $\varepsilon_{mix}$ =  $v_a\varepsilon_a$  +  $v_b\varepsilon_b$  and  $n_{mix}^2$ =  $v_an_a^2$  +  $v_bn_b^2$ , respectively;  $v_a$  and  $v_b$  are the volume percentages of each solvent.



Fig. S2 (a) The normalized fluorescence spectra of HP-NAP in ACN solvent with different mass concentration of PMMA. (b) The differential spectrum between the normalized fluorescence spectra with PMMA concentration of 150 mg/mL and PMMA concentration of 0 mg/mL.

| Table S2.    | The viscosity | dependent | fluorescence | lifetime | of HP-NA | In ACN | solvent |
|--------------|---------------|-----------|--------------|----------|----------|--------|---------|
| with differe | ent mass conc | entration |              |          |          |        |         |

| PMMA/   | τ/   |  |  |
|---------|------|--|--|
| mg⋅ml-1 | ns   |  |  |
| 150     | 3.24 |  |  |
| 110     | 3.07 |  |  |
| 70      | 3.02 |  |  |
| 30      | 2.79 |  |  |
| 0       | 2.69 |  |  |

Table S3. The time constants of HP-NAP obtained from global analysis in different polar solvents.



Fig. S3 (a) The normalized fs-TA spectra at different delay times of HP-NAP in Hex to demonstrate the signal change associated with the vibrational cooling. (b) The schematic diagram of vibrational cooling process of HP-NAP in Hex.

| τ <sub>1</sub><br>/ps | $	au_2$ /ns                                          |
|-----------------------|------------------------------------------------------|
| 0.64                  | 2.25                                                 |
| 0.72                  | 2.56                                                 |
| 0.77                  | 2.78                                                 |
| 0.92                  | 3.04                                                 |
| 0.95                  | 3.13                                                 |
|                       | $	au_1 / ps$<br>0.64<br>0.72<br>0.77<br>0.92<br>0.95 |

Table S4. The viscosity dependent time constants of HP-NAP obtained from global analysis in ACN solvent with different mass concentration.



Figure S4. The TA differential spectrum ( $\Delta\Delta A$ ) between the normalized spectra with PMMA concentration of 150 mg/mL and PMMA concentration of 0 mg/mL. Noted that the TA spectra are normalized at the SE signals for showing the SE shift.

### S3. References

1. T. Yanai, D. Tew, N. Handy. Chem. Phys. Lett., 2004, 393, 51-57.

2. J. J. P. Stewart. J. Mol. Model., **2013**, 19, 1-32.

3. J. J. P. Stewart. Stewart Computational Chemistry, Colorado Springs, CO, USA, <u>HTTP://OpenMOPAC.net</u>, **2016**.

4. J. Jovaišaitė, P. Baronas, G. Jonusauskas, D. Gudeika, A. Gruodis, J. V. Gražulevičius, S. Juršėnas. Phys. Chem. Chem. Phys., **2023**, 25, 2411-2419.

5. Z. Szakács, S. Rousseva, M. Bojtár, D. Hessz, I. Bitter, M. Kállay, M. Hilbers, H. Zhang, M. Kubinyi. Phys. Chem. Chem. Phys., **2018**, 20, 10155-10164.