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TABLE S-1. Ab initio energies at the local minima and TS geometries of 2FE at various levels of theory. All energies are in
cm−1.

G+g− G+t Tt Tg+ G+g+ Cc
G−g+ G−t Tg− G−g−

MP2/aVDZ 0.0 717.3 767.6 830.8 901.4 2482.0
CCSD/aVDZ 0.0 715.4 702.6 776.9 885.6 2388.0
CCSD(T)/aVDZ//MP2/aVDZ 0.0 741.2 749.9 790.5 894.0 2345.1
CCSD(T)/aVDZ//CCSD/aVDZ 0.0 740.2 749.4 791.3 893.4 2347.0
MP2/aVTZ 0.0 685.6 755.6 813.6 861.0 2386.8
CCSD(T)/aVTZ//MP2/aVTZ 0.0 710.3 745.5 780.0 855.5 2253.7

TABLE S-2. Normal mode frequencies of 2FE at various stationary points. All frequencies are in cm−1.

G+g− G+t Tt Tg+ G+g+ Cc

63.58 72.2 180.0 178.9 65.2 0.0
−58.02 −167.2 180.0 76.1 63.2 0.0

ω1 155.2 158.7 115.5 133.4 151.2 i245.9
ω2 315.4 199.4 213.9 261.2 240.0 226.7
ω3 376.2 330.6 285.9 283.1 327.7 322.5
ω4 518.6 498.9 472.3 467.7 514.0 617.4
ω5 873.4 892.3 832.0 812.5 880.2 857.0
ω6 907.8 917.0 1039.4 1056.3 906.3 907.8
ω7 1061.0 1088.4 1085.6 1072.8 1067.2 1079.7
ω8 1121.4 1107.5 1091.5 1102.1 1100.1 1136.8
ω9 1137.5 1132.9 1176.0 1113.8 1143.4 1169.6
ω10 1232.0 1243.2 1241.2 1225.4 1227.9 1279.7
ω11 1280.9 1281.0 1245.3 1319.9 1311.2 1294.6
ω12 1386.9 1327.2 1317.6 1356.1 1381.3 1304.5
ω13 1411.3 1420.4 1391.2 1387.8 1415.3 1421.9
ω14 1439.6 1471.8 1476.0 1446.0 1442.0 1458.2
ω15 1510.1 1515.5 1540.3 1529.8 1506.0 1538.5
ω16 1518.6 1517.5 1550.2 1541.5 1519.1 1563.5
ω17 3065.2 3043.6 3062.7 3082.3 3047.0 3076.2
ω18 3098.0 3093.4 3108.3 3091.8 3076.1 3116.8
ω19 3145.5 3107.6 3115.5 3152.5 3135.7 3117.0
ω20 3170.0 3163.2 3177.3 3174.6 3157.4 3184.1
ω21 3825.4 3856.5 3858.7 3844.9 3837.0 3822.0

PES web link:
The model PES for 2FE used in this work may be found at this Github page:

https://github.com/arandharamrinal/2FE.
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TABLE S-3. Root mean square errors for fits of optimal values of symmetrized internals S◦
j on the reaction surface. Based on

a given mode’s symmetry (Table II), Eq. (4) or (5) was used. In all cases, (M,N) = (8, 6) was used to obtain an accurate fit.

Bonds RMSE MAE Angles RMSE MAE Dihedrals RMSE MAE
(Å, ×10−5) (◦, ×10−3) (◦, ×10−3)

S◦
1 1.96 1.74 S◦

9 3.52 2.77 S◦
16 2.03 1.67

S◦
2 0.72 0.59 S◦

10 2.78 2.03 S◦
17 1.68 1.19

S◦
3 0.86 0.63 S◦

11 1.20 1.01 S◦
18 2.06 2.13

S◦
4 0.18 0.15 S◦

12 1.62 1.19 S◦
19 2.26 1.33

S◦
5 0.12 0.09 S◦

13 2.17 1.73
S◦
6 0.15 0.14 S◦

14 1.70 1.41
S◦
7 0.16 0.10 S◦

15 2.33 1.82
S◦
8 0.81 0.56

S-1. DEVELOPMENT OF THE DIPOLE MOMENT SURFACE FOR 2FE

A. DMS modelling

Towards the computation of infrared spectra for 2FE via path integral simulations, we have fitted a dipole moment
surface of the form

µ = µrs + µb

=
∑
k

qrs,k(ϕ1, ϕ2)rk +
∑
k

qb,k(δS|ϕ1, ϕ2)rk.
(1)

The above partitioning of µ into reaction surface and remainder components is carried out in the same manner as
done for the potential (Eq. (1), main manuscript). As shown in an earlier work [2] , the dipole moment surface may be
modelled through the set of scalar atomic charges (qk = qrs,k+qb,k, where k is the atom number) that are functionally
dependent on internal coordinates and atom positions (rk). Presently, we expand the charges in terms of the reaction
surface modes (ϕ1, ϕ2) and other internals (S) in a manner similar to terms in the potential.

The reaction surface atomic charges, qrs,k(ϕ1, ϕ2), are fitted to individual dihedral expansions. The reference values
are taken as HLY charges obtained at the same geometries used for the modelling of Vrs. However, the charges on
the CH hydrogen atoms do not have definite even/odd symmetry, just as their internals R also do not have definite
symmetry. As shown in Table 2 (main manuscript), the difficulty is readily overcome by taking sum and difference
combinations. We apply this to the atomic charges as well, which are then readily fitted to even/odd expansions in
(ϕ1, ϕ2) as per Eqs. (4) and (5). With suitable expansion sizes, accurate fits for µrs are obtained.

For the fitting of µb, we have limited the expansion of other internals S in qb,k to first order,

µb(δS|ϕ1, ϕ2) =
∑
k

qb,k(δS|ϕ1, ϕ2)rk

=
∑
k

∑
j

fb,kj(ϕ1, ϕ2)δsjrk,
(2)

since higher order expansions leads to a strong increase in the number of parameters to be determined. The fb,kj are
essentially the derivatives of the first qb,k along various dimensionless internals, sj . Although we first attempted to
use numerical derivatives of HLY charges, these were found to have discontinuities in (ϕ1, ϕ2) space. Instead, we have
directly fitted the residual dipole function µab

b = µ−µab
rs, where the µab

rs is the reaction surface dipole function using

the ab initio rather than fitted charges, as follows. (1) The residual µab
b is determined at displacements of ±0.03 Å

and ±0.04 Å for bonds and ±1.5◦ and ±2.0◦ for angles and dihedrals from each of the reaction surface points used for
µrs. (2) The molecular frame is fixed by choosing the CC bond axis as x̂ and using the C-C-O plane to define the xy
plane. All geometries and hence dipole components are rotated to this frame. (3) Like the qrs,k for the H atoms, the
corresponding charges qb,k are neither even nor odd functions of (ϕ1, ϕ2). By taking sum and difference combinations
of the charges and also Cartesian coordinates of CH hydrogen atoms, the equation is symmetrized. Consequently,
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TABLE S-4. Errors in fitted atomic charges (in a.u.) at the 294 (ϕ1, ϕ2) geometries. Fits are carried out with (Mmax, Nmax)
= (10,8).

Atom MAE RMSE
(×10−3) (×10−3)

C1 2.56 3.58
C2 2.43 3.60
O3 0.49 0.65
F4 0.54 0.73
H5 0.80 1.14
H6 0.79 1.12
H7 0.82 1.15
H8 0.78 1.07
H9 0.27 0.33

TABLE S-5. Comparising of the fitted µrs to the ab initio dipole moment on the dihedral surface. All quantities are in a.u.

MAE RMSE
(×10−4) (×10−4)

µx 0.629 7.818
µy 1.623 2.006
µz 1.792 2.205

TABLE S-6. Comparison of the dipole moments at geometries displaced from the dihedral surface (see Sec. S-1A). Large
displacements refer to ±0.03 and ±0.04 Å in bonds and ±1.5◦ and ±2.0◦ in angles and dihedrals, while small displacements
are ±0.002 Å and ±0.004 Å in bonds and ±0.1◦ and ±0.2◦ in angles and dihedrals. All errors are reported in a.u.

MAE (×10−4) RMSE(×10−4)

∆µx ∆µy ∆µz ∆µx ∆µy ∆µz

Small displ 0.653 1.642 1.819 8.255 2.033 2.245
Large displ 1.322 2.811 3.215 3.125 4.195 5.214
Overall 0.988 2.227 2.517 2.285 3.297 4.015

the modified fb,kj expansion coefficients are even/odd functions in (ϕ1, ϕ2). (4) The expansion coefficients are also
constrained by a charge neutrality condition,

∑
k qb,k = 0. Note that such a restraint is already present in the HLY

charges used to fit the qrs,k. Using all the geometries discussed above, a system of linear equations[2] is prepared
including the dihedral even/odd expansions as appropriate, and solved using the singular value decomposition (SVD)
method from the Numpy package.[3] With appropriate dihedral expansion (Mmax, Nmax) sizes, accurate µb fits are
obtained.

B. DMS fits

Table S-4 shows the quality of the fit to the atomic charges for 2FE using HLY charges at 294 reaction surface
points. The fits used (Mmax, Nmax) = (10, 8). Using the fitted charges, the dipole moments on the reaction surface
are compared with ab initio dipole moments componentwise in Table S-5. Finally, Table S-6 provides a comparison
of the µb part of the dipole expansion at the displaced geometries from the reaction surface (see Sec. S-1A). Overall,
the fits are found to be satisfactory.
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S-2. PREPARATION OF THE SET OF TEST DATA POINTS

To measure the quality of the full dimensional PES, a test set of ab initio points was prepared with the following
approach. From long PIMD simulations at 300 K with the potential truncated up to quartic terms, geometries of
selected beads (every 16th) were sampled at 0.5 ps intervals. The sample points were mainly in the G+g− basis, but
a small fraction were also from the G+t and G+g+ regions. The sample points were filtered based on proximity. To
this end, vectors composed of bond distances, bond angles and dihedrals are constructed for each geometry. From
these, magnitudes of difference vectors between different geometries was calculated. Denoting these as lb, la and ld
for a pair of geometries, it was ensured that at least two of the following criteria were satisfied: lb > 0.2 Å, lb > 5◦

and ld > 15◦. A total of 1077 sample points were selected in this manner.

In order to sample points at other minima that are not accessed by PIMD, we have employed a sampling approach
due to Brown[1] that is based on the quantum harmonic distribution (QHD). At each minimum of 2FE, the quantity
d(ν̃i, A) = h/(8π2cν̃i) coth(1/2A), where c is the speed of light, provides the variance for ith mode with frequency ν̃i
(in cm−1). If A = kBT/hcν̃i, the exact QHD is obtained. However, A is treated as a dimensionless parameter here.
The variances along all modes at a given minimum are used in a multidimensional Gaussian distribution to obtain
random displacements in all normal modes, thereby generating sample geometries. By varying A, the spread of the
distribution can be controlled. As shown by Brown [1], using A instead of temperature T has two related advantages.
First, the sampling of low frequency modes is on a par with that for high frequency modes. Second, to generate
sufficiently displaced high frequency modes, high T needs to be used. But this generates overly distorted geometries
in low frequency modes. Such a problem is avoided by using suitable values of A instead. Following Brown, we have
used A = 0.5, 1 and 2, and obtained geometries at the Tt, Tg+ and G+g+. The selected geometries are such that (1)
no internal is excessively displaced; geometries were discarded if |Ri − ⟨Ri⟩ | > 1.5σ(Ri), where the mean ⟨Ri⟩ and
standard deviation σ(Ri) were estimated from the PIMD simulation with the quartic potential, and (2) the chosen
points satisfied the same geometric non-proximity criteria as used for the PIMD sampling. A total of 4500 points
(500 points per A value per minimum) were selected in this manner.

Additional points were sampled to cover other regions of the (ϕ1, ϕ2) landscape away from the minima and not
already covered by the PIMD sampling. For this, we took samples of points in selected regions from the umbrella
sampling simulations along ϕ1 amounting to 1402 points. From the last 3 ns of the classical 300 K WT-metaD
simulations, an additional 500 points were sampled. In the selection of these points, it was ensured that the points
are sufficiently apart from each other using the bond distance, angle and dihedral criteria discussed above.
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FIG. S-1. Comparison of abinitio MP2/aVTZ energies with the PES for 2FE truncated to quartic terms in Vb. The plots
indicate large deviations at high energies, indicating the importance of including the higher order terms in the PES.
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FIG. S-2. Averages of selected internals obtained from classical and PIMD simulations at various temperatures
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FIG. S-3. Classical and PIMD distributions of (a, b) ϕ1, the (c, d) OF and (e, f) HF distances and (g, h) the HOF angle as a
function of temperature for geometries restricted to the global minima. For this analysis, G+g− and G−g+ data were suitably
combined; while the ϕ1 value from the latter was mapped to the former basin, the other internals are invariant to dihedral
mapping.
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TABLE S-7. Umbrella sampling parameters. Bias form: Vumb(ϕ1) =
1
2
Kumb(ϕ1 − ϕ◦

1)
2.

(1) 50 K simulations: Path integral umbrella sampling parameters along ϕ1 are given in the table below. The centres
of the umbrella potential ϕ◦

1), corresponding force constant K, and length of simulation Tsim are shown. Note that 50 K
classical simulations with umbrella sampling were also performed, but the resulting FES was not converged due to insufficient
configuration sampling in the ϕ1 = 120◦ region despite different choices of Kumb attempted in that region. However, the
estimated FES essentially overlaps with the 300 K classical FES up to about 100◦

(2) 300 K simulations: Foth PIMD and classical simulations, the same ϕ◦
1 as given in the table are used with a fixed force

constant Kumb = 500 kJ mol−1 rad−2. All simulations were 200 ps long.

In all cases (50 K and 300 K) the first 10 ps are discarded as equilibration.

50 K, PIMD

ϕ◦
1 Tsim Kumb ϕ◦

1 Tsim Kumb ϕ◦
1 Tsim Kumb

0 400 200 60 200 500 120 500 200
5 400 200 65 200 500 125 500 200
10 400 200 70 200 500 130 500 200
15 400 200 75 200 500 135 500 200
20 400 200 80 200 500 140 500 200
25 400 200 85 200 500 145 500 200
30 400 200 90 200 500 150 500 200
35 400 200 95 200 500 155 500 200
40 200 500 100 500 200 160 500 200
45 200 500 105 500 200 165 500 200
50 200 500 110 500 200 170 500 200
55 200 500 115 500 200 175 500 200

180 500 200

Units: ϕ◦
1 (deg), Tsim (ps), K (kJ mol−1 rad−2)



8

FIG. S-4. Distribution of centroid (ϕ1, ϕ2) values obtained via umbrella sampling simulations along ϕ1 at both 50 K and 300
K. Plots are provided for 2FE-h5 (a, b), 2FE-d1 (c, d) and 2FE-d5 (e,f).
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2FE-h5 (FC2H4OH)

(a) 300 K, Rg(C1, C2, O3, F4) (b) 300 K, Rg(H5-H8, H9)
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FIG. S-5. Radii of gyration, Rg, for various atoms of 2FE from umbrella sampling simulations at 300 K as a function of the
FCCO dihedral (ϕ1). The top, middle and bottom rows provide the trends for 2FE-h5, 2FE-d1 and 2FE-d5, respectively. The
plots in the left column (a, c, e) show the radii for the heavy atoms, while those in the right column (b, d, f) show the radii for
the H/D atoms.
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2FE-h5 (FC2H4OH)

(a) 50 K, Rg(C1, C2, O3, F4) (b) 50 K, Rg(H5-H8, H9)
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FIG. S-6. Radii of gyration, Rg, for various atoms of 2FE from umbrella sampling simulations at 50 K as a function of the
FCCO dihedral (ϕ1). The top (a,b), middle (c,d) and bottom (e,f) rows provide the trends for 2FE-h5, 2FE-d1 and 2FE-d5,
respectively. The plots in the left column (a, c, e) show the radii for the heavy atoms, while those in the right column (b, d, f)
show the radii for the H/D atoms.



11

(a) σOH(ϕ1) (b) σOF(ϕ1)

0 20 40 60 80
1 (degree)

0.02

0.03

0.04

0.05

0.06

0.07

(H
9-O

3)
 (d

eg
)

Classical,300K
PIMD,300K
PIMD,50K

0 20 40 60 80
1 (degree)

0.075

0.080

0.085

0.090

0.095

0.100

0.105

(O
3-F

4)
 (Å

)

Classical,300K
PIMD,300K
PIMD,50K

(c) σHF(ϕ1) (d) σOHF(ϕ1)

0 20 40 60 80
1 (degree)

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

(H
9-F

4)
 (Å

)

Classical,300K
PIMD,300K
PIMD,50K

0 20 40 60 80
1 (degree)

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

(O
3-H

9-F
4)

 (d
eg

)

Classical,300K
PIMD,300K
PIMD,50K

FIG. S-7. Widths of the distributions of the (a) OH, (b) OF and (c) HF distances and (d) the HOF angle as a function of ϕ1

for geometries obtained from umbrella sampling. The corresponding trends of the averages are provided in the main text. For
the analyses, only those geometries with −120◦ ≤ ϕ2 ≤ 0◦ for ϕ1 > 30◦ and −60◦ ≤ ϕ2 ≤ 60◦ for ϕ1 < 30◦ are considered; see
Fig. S-4 for the (ϕ1, ϕ2) distributions.
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FIG. S-8. A comparison of the harmonic spectrum with those from classical and TRPMD simulations at 300 K. The spectra as
plotted over ranges (a) 50–600 cm−1, (b) 800–1175 cm−1, (c) 1175–1600 cm−1, (d) 2800–3200 cm−1, (e) 3600–4000 cm−1, for
ease of comparison. The harmonic spectrum is generated from normal mode unscaled frequencies (Table S-2) and intensities.
The latter is within the double harmonic approximation, taken directly from frequency calculations with Gaussian 16 at each
minimum. A 5 cm−1 Gaussian is applied to each stick. In the final harmonic spectrum, each conformer is weighted by its
Boltzmann population (based on the ab initio energy relative to the G+g− minimum) and degeneracy.
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