Electronic Supplementary Information to **Prediction of induced magnetism in 2D Ti**2**C based MXene by manipulating the mixed surface functionalization and metal substitution computed by xTB model Hamiltonian of the DFTB method**

Taoufik Sakhraoui [∗] and František Karlický

Department of Physics, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic

Contents

[∗] taoufik.sakhraoui@osu.cz

1 Energy difference by DFT

Density functional theory (DFT) calculations were carried out using Quantum espresso Package [1, 2]. The electronic exchange-correlation interaction was described by the functional of Perdew, Burke, and Ernzerhof (PBE) within the generalized gradient approximation (GGA) [3]. Energy and force convergence criteria of 10*−*⁴ a.u and 2*×*10*−*⁵ a.u, respectively, were used in all calculations, along with a kinetic energy cutoff of 80 Ry to expand the wave functions, a 6*×*6*×*1 Monkhorst-Pack k-point grid

[4] and a Marzari-Vanderbilt smearing width [5] of $0.05Ry$.

Table S1: PBE calculations of the magnetic energy difference ($E_{FM,AFMj(j=1,2,3)} - E_{FM}$) in meV and the corresponding magnetic moments in μ_B /cell of mixed Ti₂CA_xB_y (A, B = O, F, OH). The ground <u>state energy</u> is marked in bold.

	Magnetic energy difference			Total magnetic moments				
Initial magnetic state	FM	AFM1	AFM ₂	AFM3	FM	AFM1	AFM ₂	AFM3
$Ti2CO1(OH)1$	0.00	16.30	8.10	8.10	1.05	1.00	0.07	0.02
Ti2CO _{1.5} (OH) _{0.5}	0.00	0.00	0.00	0.00	0.97	0.97	0.97	0.97
$Ti2CO0.5(OH)1.5$	0.00	-10.80	-12.20	-2.70	1.69	0.36	1.31	0.05
$Ti2CO1F1$	0.00	0.00	38.10	38.10	1.96	1.96	0.01	0.02
$Ti2CO1.5F0.5$	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00
$Ti2CO0.5F1.5$	0.00	80.30	32.60	5.40	2.92	0.60	1.82	0.88
$Ti2CF1(OH)1$	0.00	34.00	-59.80	-34.00	2.80	0.72	0.00 (AFM2)	0.00 (AFM3)
$Ti2CF1.5(OH)0.5$	0.00	79.00	-27.20	69.40	3.85	0.23	0.00 (AFM2)	0.16
$Ti2CF0.5(OH)1.5$	0.00	47.60	95.20	39.30	3.31	0.94	0.63	0.50

2 Substitution of Ti by Sc in mixed surface termination (Ti2**CA***x***B***y***).**

Table S2: Absolute value of the local magnetic moments (in μ_B) in Ti₂CA_xB_{*y*}.

	Ti	C	Sc
Sc in Ti ₂ CO _{1,0} (OH) _{1,0}	0.32 to 1.52	0.42 to 0.60	0.10
Sc in Ti ₂ CO _{1.5} (OH) _{0.5}	$0.00 \text{ to } 1.48$	0.24 to 0.30	0.02
Sc in Ti ₂ CO _{0.5} (OH) $_{1.5}$	0.10 to 1.71	$0.60 \text{ to } 0.70$	0.13
Sc in $Ti_2CO_1 \, \text{o}F_1 \, \text{o}$	0.47 to 1.25	0.31 to 0.43	0.08
Sc in Ti ₂ CO ₁₅ F ₀₅	$0.00 \text{ to } 1.30$	0.12 to 0.24	0.02
Sc in $Ti2CO0.5F1.5$	0.61 to 1.53	0.45 to 0.50	0.11
Sc in Ti ₂ CF _{1,0} (OH) _{1,0}	1.28 to 1.83	0.66 to 0.75	0.18
Sc in Ti ₂ CF _{1.5} OH _{0.5}	1.17 to 1.71	$0.60 \text{ to } 0.64$	0.14
Sc in Ti ₂ CF _{0.5} (OH) _{1.5}	1.10 to 1.71	0.72 to 0.79	0.20

Table S3: Absolute value of the local magnetic moments (in μ_B) in Ti substituted by Sc in Ti₂CA_xB_{*y*}.

3 Substitution of Ti by Sc in 5*×***5***×***1-Ti**2**CO**²

Figure S1: Structure of Ti substituted by Sc in $5 \times 5 \times 1$ -Ti₂CO₂ following the Zigzag, Armchair and Cluster directions.

Table S4: Total energies of n Ti atoms substituted by n Sc atoms in $5 \times 5 \times 1$ -Ti₂CO₂ following the Zigzag, Armchair, and Cluster directions. 1, 2, and 3 Sc in the cell have the same positions for all the considered directions, and 4Sc atoms following the cluster are the same as in the armchair direction (See Figure S1).

	Armchair	Zigzag	Cluster
1Sc	-9637.2446	-	
2Sc	-9630.9588		
3Sc	-9624.3116		
4Sc	-9617.4778	-9617.6027	-
5Sc	-9610.3680	-9610.3667	-9610.2819
6Sc	-9603.1222	-9603.1358	-9602.8932
7Sc	-9596.1266	-9595.8059	

References

- [1] P Giannozzi, S Baroni, N Bonini, M Calandra, R Car, C Cavazzoni, D Ceresoli, G L Chiarotti, M Cococcioni, I Dabo, A Dal Corso, S de Gironcoli, S Fabris, G Fratesi, R Gebauer, U Gerstmann, C Gougoussis, A Kokalj, M Lazzeri, L Martin-Samos, N Marzari, F Mauri, R Mazzarello, S Paolini, A Pasquarello, L Paulatto, C Sbraccia, S Scandolo, G Sclauzero, A P Seitsonen, A Smogunov, P Umari, and R M Wentzcovitch. Quantum espresso: a modular and open-source software project for quantum simulations of materials. *Journal of Physics: Condensed Matter*, 21:395502, 2009.
- [2] P Giannozzi, O Andreussi, T Brumme, O Bunau, M Buongiorno Nardelli, M Calandra, R Car, C Cavazzoni, D Ceresoli, M Cococcioni, N Colonna, I Carnimeo, A Dal Corso, S de Gironcoli, P Delugas, R A DiStasio, A Ferretti, A Floris, G Fratesi, G Fugallo, R Gebauer, U Gerstmann, F Giustino, T Gorni, J Jia, M Kawamura, H-Y Ko, A Kokalj, E Küçükbenli, M Lazzeri, M Marsili, N Marzari, F Mauri, N L Nguyen, H-V Nguyen, A Otero de-la Roza, L Paulatto, S Poncé, D Rocca, R Sabatini, B Santra, M Schlipf, A P Seitsonen, A Smogunov, I Timrov, T Thonhauser, P Umari, N Vast, X Wu, and S Baroni. Advanced capabilities for materials modelling with quantum espresso. *Journal of Physics: Condensed Matter*, 29:465901, 2017.
- [3] J P Perdew, K Burke, and M Ernzerhof. Generalized gradient approximation made simple. *Phys. Rev. Lett.*, 77:3865–3868, 1996.
- [4] H J Monkhorst and J D Pack. Special points for brillouin-zone integrations. *Phys. Rev. B*, 13:5188– 5192, 1976.
- [5] P L Silvestrelli, N Marzari, D Vanderbilt, and M Parrinello. Maximally-localized wannier functions for disordered systems: Application to amorphoussilicon. *Solid State Communications*, 107:7–11, 1998.