Supplementary Information for "Size-dependent linear and nonlinear optical responses of silicon clusters"

Quanjie Zhong*

School of Materials Science and Physics, China University of Mining and Technology,

Xuzhou 221116, Jiangsu Province, China

1. Theory

Energy of system is written as Taylor expansion with respect to uniform external electric field:¹

$$E(F) = E(0) - \mu_0 F - (1/2)\alpha F^2 - (1/6)\beta F^3 - (1/24)\gamma F^4 - \cdots$$
(S1)

Where μ_0 , α , β and γ represent the permanent dipole moment, polarizability, first- and second-order hyperpolarizability, respectively. All these parameters are obtained through calculating the derivative of energy with respect to external electric field. Furthermore, the orientationally average polarizability and second-order hyperpolarizability are defined as:²

$$\alpha_{ave} = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3 \tag{S2}$$

$$\gamma_{ave} = (\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz} + 2\gamma_{xxyy} + 2\gamma_{xxzz} + 2\gamma_{yyzz})/5$$
(S3)

where α_{ii} , γ_{iiii} , and γ_{iijj} represent the components of the polarizability and second-order hyperpolarizability tensors.

Dipole moment and electron density of system are written as Taylor expansion with respect to uniform external electric field:³

$$\mu(F) = -\partial E/\partial F = \mu_0 + \alpha F + (1/2)\beta F^2 + (1/6)\gamma F^3 + \cdots$$
(S4)

$$\rho(r,F) = \rho^{(0)}(r) + \rho^{(1)}(r)F + (1/2)\rho^{(2)}(r)F^2 + (1/6)\rho^{(3)}(r)F^3 + \cdots$$
(S5)

Where μ_0 , α , β and γ represent the permanent dipole moment, polarizability, first- and second-order hyperpolarizability, respectively. Therefore, the components of the polarizability, first- and second-order hyperpolarizability density are defined as:

$$\rho_{i}^{(1)}(r) = [\partial \rho(r)/(\partial F_{i})]_{F=0}$$
(S6)

$$\rho_{ij}^{(2)}(r) = \left[\frac{\partial^2 \rho(r)}{\partial F_i \partial F_j}\right]_{F=0}$$
(S7)

$$\rho_{ijk}^{(3)}(r) = \left[\frac{\partial^3 \rho(r)}{\partial F_i \partial F_j \partial F_k}\right]_{F=0}$$
(S8)

Through numerical derivative, the components of the (hyper)polarizability density, such as $\rho_{xxx}^{(3)}$, are calculated using the following formulas:

$$\rho_{xxx}^{(3)} = \left[\rho(2F_x) - 2\rho(F_x) + 2\rho(-F_x) - \rho(-2F_x)\right] / (2F_x^3)$$
(S9)

Furthermore, the local contribution to the (hyper)polarizability components are defined as:

$$\alpha_{il} = \int -\rho_{i}^{(1)}(r) l dr \tag{S10}$$

$$\beta_{ijl} = \int -\rho_{ij}^{(2)}(r) l dr \tag{S11}$$

$$\gamma_{ijkl} = \int -\rho_{ijk}^{(3)}(r) l dr \tag{S12}$$

where *i*, *j*, *k* and *l* represent one of the directions $\{x, y, z\}$.

Cluster	Exp.	PBE	B3LYP	PBE0	B3PW91	B2PLY	MP2
						Р	
		def2-TZVP					
	252ª	238(14)	242(10)	253(1)	248(4)	235(17)	235(17)
	300 ^a	307(7)	317(17)	322(22)	326(26)	307(7)	295(5)
C:	386 ^a	391(5)	387(1)	408(22)	401(15)	384(2)	384(2)
S 1 ₆	404 ^a	411(7)	394(10)	425(21)	414(10)	407(3)	438(34)
	458 ^a	460(2)	463(5)	482(24)	484(26)	462(4)	465(7)
	464 ^b	458(6)	457(7)	480(16)	475(11)	460(4)	474(10)
Si ₇	289ª	266(23)	214(75)	283(6)	236(53)	251(38)	304(15)
	340 ^a	322(18)	286(54)	340(0)	312(28)	312(28)	342(2)
	340 ^a	324(16)	318(22)	343(3)	318(22)	320(20)	356(16)
	358 ^a	341(17)	344(14)	351(7)	330(28)	338(20)	356(2)
	417 ^b	392(25)	398(19)	403(14)	372(45)	391(26)	435(18)
	435ª	418(17)	415(20)	428(7)	404(31)	413(22)	451(16)

Table S1. Assessment for the structural optimization (I). Calculated frequency values (cm⁻¹) with their corresponding experimental values.

^aref. 4; ^bref. 5.

Cluster	E	PBE0				
Cluster	Exp.	def2-SVP	def2-TZVP	def2-QZVP		
	252 ^a	249(3)	253(1)	252(0)		
	300 ^a	325(25)	322(22)	321(21)		
c:	386 ^a	405(19)	408(22)	407(21)		
516	404 ^a	422(18)	425(21)	424(20)		
	458 ^a	474(16)	482(24)	481(23)		
	464 ^b	471(7)	480(16)	479(15)		
	289ª	277(12)	283(6)	282(7)		
	340 ^a	336(4)	340(0)	339(1)		
c:	340 ^a	337(3)	343(3)	342(2)		
517	358 ^a	354(4)	351(7)	350(8)		
	417 ^b	399(18)	403(14)	402(15)		
	435 ^a	422(13)	428(7)	427(8)		

Table S2. Assessment for the structural optimization (II). Calculated frequency values (cm⁻¹) with their corresponding experimental values.

^aref. 4; ^bref. 5.

		PBE	B3LYP	PBE0	B3PW91	B2PLY	MP2
Cluster	Exp.					Р	
				def2-	TZVP		
Si ₆	7.9ª	7.49	7.48	7.58	7.59	7.49	7.62
Si ₇	7.9ª	7.68	7.64	7.78	7.76	7.70	8.06

 Table S3. Assessment for the electronic absorption spectra calculation (I). Calculated

 adiabatic ionization potential (eV) with their corresponding experimental values.

^aref. 6.

Table S4. Assessment for the electronic absorption spectra calculation (II). Calculated adiabatic ionization potential (eV) with their corresponding experimental values.

Cluster	Exp.	PBE0			
Cluster		def2-SVP	def2-TZVP	def2-QZVP	
Si ₆	7.9ª	7.77	7.58	7.57	
Si ₇	7.9ª	7.98	7.78	7.77	

^aref. 6.

Clu	Com	CCSD(T)	CAM-B3LYP	PBE0	PBE20		
Clu.	Com.	aug-cc-pVTZ					
	Yxxxx	9.75E+04	1.01E+05(3.24%)	9.87E+04(1.21%)	1.01E+05(3.40%)		
Si ₅	γ_{yyyy}	9.63E+04	1.01E+05(4.57%)	9.88E+04(2.56%)	1.01E+05(4.79%)		
	γ_{zzzz}	7.16E+04	7.05E+04(-1.52%)	7.18E+04(0.27%)	7.37E+04(2.94%)		
	Yxxxx	1.60E+05	1.49E+05(-7.28%)	1.60E+05(-0.49%)	1.66E+05(3.37%)		
Si ₆	γ_{yyyy}	1.60E+05	1.49E+05(-7.28%)	1.60E+05(-0.49%)	1.66E+05(3.37%)		
	γ_{zzzz}	6.91E+04	6.58E+04(-4.77%)	6.57E+04(-5.01%)	6.73E+04(-2.62%)		
	γ_{xxxx}	1.58E+05	1.41E+05(-11.0%)	1.49E+05(-5.92%)	1.54E+05(-2.63%)		
Si ₇	γ_{yyyy}	1.52E+05	1.41E+05(-7.39%)	1.49E+05(-2.11%)	1.54E+05(1.32%)		
	γ_{zzzz}	7.16E+04	6.66E+04(-7.00%)	6.65E+04(-7.19%)	6.82E+04(-4.81%)		
Si ₈	Yxxxx	2.44E+05	2.22E+05(-9.30%)	2.38E+05(-2.46%)	2.47E+05(1.18%)		
	γ_{yyyy}	1.35E+05	1.29E+05(-4.10%)	1.30E+05(-3.71%)	1.33E+05(-0.96%)		
	γ_{zzzz}	9.14E+04	8.35E+04(-8.56%)	8.44E+04(-7.59%)	8.69E+04(-4.90%)		
	Yxxxx	1.36E+05	1.24E+05(-8.52%)	1.28E+05(-5.82%)	1.32E+05(-3.10%)		
Si9	<i>үуууу</i>	1.60E+05	1.46E+05(-8.77%)	1.53E+05(-4.64%)	1.58E+05(-1.49%)		
	γ_{zzzz}	1.62E+05	1.49E+05(-7.61%)	1.56E+05(-3.30%)	1.62E+05(-0.01%)		
Si ₁₀	Yxxxx	1.69E+05	1.50E+05(-11.6%)	1.57E+05(-7.21%)	1.62E+05(-4.12%)		
	γ_{yyyy}	1.57E+05	1.40E+05(-11.0%)	1.45E+05(-7.24%)	1.50E+05(-4.24%)		
	γ_{zzzz}	1.69E+05	1.50E+05(-11.5%)	1.57E+05(-7.14%)	1.62E+05(-4.05%)		

Table S5. Assessment for the second-order hyperpolarizability calculation. Calculated

 second-order hyperpolarizability values (au).

Excited state	Clusters	MO transitions ^a
	Si ₅	HOMO→LUMO (99.7%)
	Si ₆	HOMO−1→LUMO (61.9%); HOMO→LUMO (38.0%)
	Si ₇	HOMO→LUMO (99.9%)
	Si ₈	HOMO→LUMO (99.6%)
	Si ₉	HOMO→LUMO (99.3%)
	Si ₁₀	HOMO→LUMO (97.4%)
	Si ₁₁	HOMO→LUMO (99.1%)
C S	Si ₁₂	HOMO→LUMO (93.1%)
$\mathbf{S}_0 \rightarrow \mathbf{S}_1$	Si ₁₃	HOMO→LUMO (99.7%)
	Si ₁₄	HOMO→LUMO (94.1%)
	Si ₁₅	HOMO−1→LUMO (95.2%)
	Si ₁₆	HOMO→LUMO (99.0%)
	Si ₁₇	HOMO→LUMO (99.0%)
	Si ₁₈	HOMO→LUMO (99.8%)
	Si ₁₉	HOMO→LUMO (94.9%)
	Si ₂₀	HOMO→LUMO (87.0%); HOMO-2→LUMO+1(7.2%)

Table S6. Molecular orbital (MO) transitions in ground state to first excited state.

^aMO transitions with absolute contribution more than 5.0% are listed.

Figure S1. Simulated ultraviolet–visible–near-infrared spectra of odd-numbered silicon clusters.

Figure S2. Electron localization function of silicon clusters. The isosurface value was set to 0.9.

Figure S3. Evolution behaviors of LAR value with size in silicon clusters.

Figure S4. Responses of Si₁₁ cluster to external electric fields. (a) Polarizability density (upper left) $\rho_{yy}^{(1)}$, first-order hyperpolarizability (upper middle) $\rho_{yyy}^{(2)}$, second-order hyperpolarizability (upper right) $\rho_{yyyy}^{(3)}$, local contribution to the polarizability (lower left) a_{yy} , local contribution to the first-order hyperpolarizability (lower middle) β_{yyyy} , local contribution to the second-order hyperpolarizability (lower right) γ_{yyyyy} . (b) Polarizability density (upper left) $\rho_{z}^{(1)}$, first-order hyperpolarizability (upper middle) $\rho_{zz}^{(2)}$, second-order hyperpolarizability (upper middle) $\rho_{zz}^{(2)}$, local contribution to the first-order hyperpolarizability (lower middle) $\rho_{zzz}^{(2)}$, local contribution to the second-order hyperpolarizability (lower right) γ_{zzzz} .

References

- 1 D. R. Kanis, M. A. Ratner and T. J. Marks, *Chem. Rev.*, 1994, 94, 195–242.
- 2 M. T. Zhao, B. P. Singh and P. N. Prasad, J. Chem. Phys., 1988, 89, 5535.
- M. Nakano, I. Shigemoto, S. Yamada and K. Yamaguchi, J. Chem. Phys., 1995, 103, 4175–4191.
- 4 E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold and W. L. Brown, *Nature*, 1993, **366**, 42–44.
- 5 A. Fielicke, J. T. Lyon, M. Haertelt, G. Meijer, P. Claes, J. de Haeck and P. Lievens, *J. Chem. Phys.*, 2009, **131**, 171105.
- 6 K. Fuke, K. Tsukamoto, F. Misaizu and M. Sanekata, J. Chem. Phys., 1993, 99, 7807.