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Methodology

The highest occupied molecular orbital (HOMO) and the lowest unoccupied orbital (LUMO) of
2-2AEPy and gap energy (∆Eg) between them were evaluated. The HOMO-LUMO energies
are usually used to calculate some molecular properties such as ionization potential (I), electron
affinity(A), absolute hardness(η), softness(s), chemical potential(µ) and absolute electronega-
tivity (x) as follows:

I = EHOMO (1)

A = −ELUMO (2)

η =
ELUMO − EHOMO

2
(3)

S =
1

2η
(4)

µ =
−(I + A)

2
(5)

X =
I + A

2
(6)

Some Molecular properties of the activator are announced in Table S1.

Table S1: Molecular properties (eV) of activator computed at B3LYP-D3/6-31+g** method

HOMO LUMO ∆E x η s µ
2-2AEPy -6.4 -1.0 5.4 -2.7 2.7 0.2 2.7
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A general mechanism for the activation of carbonic anhydrase with activators has been
been propounded based on Eq (7).

[(His)3Zn
+2(H2O)+Activator(Ac)] ⇋ [(His)3Zn

+2(H2O)/Ac] ⇋ [(His)3Zn
+2(OH−)]+AcH+

(7)
where [(His)3Zn

+2(H2O)/Ac] denote the enzyme-activator complex.
Thermodynamic functions have been evaluated from the following equations. Total enthalpies
of the studied species X, (H(X)), at the temperature T are usually evaluated for the inactive form
to the active form.

H(X) = E0 + ZPE + Etrans + Erot + Evib +RT (8)

where E0 is determined total electronic energy, ZPE stands for zero-point energy, Etrans, Erot

and Evib are the translational, rotational and vibrational contributions to the enthalpy, respec-
tively. Eventually, to convert energy to enthalpy, the PV-work term that denoted by RT is added.
The standard enthalpy changes of the reaction (∆H0

rxn) from the expression (7) is calculated as:

∆H0
rxn = [H0

EZn(II)OH− +H0
ACH+ ]− [H0

EZn(II)OH2
+H0

Ac] (9)

Identically, ∆S0
rea is gained by

∆S0
rxn = [S0

EZn(II)OH− + S0
AH+ ]− [S0

EZn(II)OH2
+ S0

Ac] (10)

Then using ∆G = ∆H − T∆S, ∆G0
rxn was determined.
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pos1

pos2pos0

Fig. S 1: The low-energy docked positions of 2-2AEPy into hCA II were obtained by 300
separate AuthoDock4 runs. The magenta color (pos0) shows the initial position, where 2-
2AEPy replaces the HIS300 position reported in the X-ray. The main difference between pos0
and pos1 is the presence of three crystallographic molecules that separate 2-2AEPy (located
in the ligand X-ray position) from the Zn active site; otherwise, they are quite similar. The
scored binding energies of pos0 are around -5.7 kcal.mol−1 and those of pos2 are around -5.5
kcal.mol−1, indicating that pos0 is the preferred site and also matches better with the X-ray
position of HIS300.
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Fig. S2: 10 ns simulations on various models studied in the work. Pos1 and Pos2 are obtained
by docking, and Pos0 is based on the location of the original ligand of 2ABE (HIS300 acti-
vator). In the Pos0 MD simulations, we preserved all four crystallographic water molecules
(Zn-bounded) plus three neighboring water molecules. In Pos1, which is very close to Zn, we
just kept the Zn-bounded water molecules, and the MD simulations reveal that after around 4
ns, the ligand gets out of the portien environment.
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Additional results concerning the structures of hCA II in both forms
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Fig. S3: The optimized structure of hCA II active site in the zinc hydroxide (a), inactive form
(b) and schematic of X-ray crystallographic (c). All bond lengths and bond angles are given in
(Å) and (◦), respectively.
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Table S2: Chemical structure details of optimized geometry for the active and inactive form of
hCA II active site in biological environment using B3LYP-D3/6-31+g(2d,2p) and comparison
with X-ray data

Connected atoms Active form Inactive form X-ray

Bond distance (Å)

Zn-O1 1.87 2.03 2.25
O1-H1 0.96 1.02 0.97
Zn-N3 2.09 2.01 2.09
Zn-N8 2.04 2.03 2.22
Zn-N9 2.05 2.00 2.10
N3-C4 1.33 1.33 1.32
N8-C7 1.33 1.33 1.32
N9-C10 1.38 1.39 1.37
Standard deviation 0.06 0.05

Bond angle (◦)

O1-Zn-N3 105.57 105.30 106.08
O1-Zn-N8 130.53 116.17 106.79
O1-Zn-N9 98.35 101.02 102.32
N3-Zn-N8 94.95 108.31 110.95
N3-Zn-N9 107.17 106.12 103.00
N9-Zn-N8 114.47 119.02 118.22
N3-C4-N5 110.54 109.27 108.37
Standard deviation 5.27 2.45
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Geometries and relative energies of reactant for activator from the Nα position

The large number of structures (>50) geometries of the reactant for the activator from the Nα
position have been optimized. The sixteen lowest ones the structures and the energies are given.
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Fig. S4: Geometries and relative energies of the sixteen lowest energy reactants for the activator
from the Nα position. The energies relative to React are given in kcal/mol.
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Geometries and relative energies of reactant for activator from the Nβ position

The large number of structures (>40) geometries of the reactant for the activator from the Nβ
position have been optimized. The eight lowest ones the structures and the energies are given.
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Fig. S5: Geometries and relative energies of the eight lowest energy reactants for the activator
from the Nβ position. The energies relative to React are given in kcal/mol.
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Optimized structures of reactant for both of positions
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Fig. S6: Optimized structure of the reactant for the activator from the Nα position (a) and the
activator from the Nβ position (b). Distances are given in angstrom.
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Table of NBO atomic charge for both mechanisms

Table S 3: NBO atomic charge (in a.u) for stepwise and concerted mechanisms in biological
environment for Nα and Nβ positions.

Zn O1 H1 O2 H2 O3 H3 O4 H4 N

Reactα 1.32 -1.06 0.55 -1.04 0.54 -1.05 0.54 -1.08 0.52 -0.94
Reactβ 1.32 -1.06 0.55 -1.04 0.54 -1.05 0.54 -1.06 0.52 -0.53

Stepwise

TS1α 1.31 -1.21 0.56 -0.98 0.55 -1.01 0.55 -1.07 0.52 -0.93
TS1β 1.31 -1.17 0.56 -1.01 0.56 -1.04 0.55 -1.06 0.52 -0.53

Int α 1.32 -1.06 0.55 -1.04 0.53 -1.05 0.54 -1.06 0.55 -0.92
Intβ 1.32 -1.06 0.55 -1.04 0.54 -1.05 0.54 -1.06 0.53 -0.51

TS2α 1.32 -1.18 0.56 -1.02 0.55 -1.05 0.55 -1.06 0.52 0.93
TS2β 1.31 -1.16 0.55 -1.05 0.55 -1.04 0.55 -1.06 0.52 0.52

Concerted

TSα 1.33 -1.10 0.55 -1.05 0.55 -1.06 0.55 -1.09 0.51 -0.92
TSβ 1.31 -1.18 0.55 -1.06 0.55 -1.06 0.55 -1.07 0.51 -0.52

Prodα 1.29 -1.22 0.54 -1.07 0.54 -1.05 0.54 -1.06 0.49 -0.86
Prodβ 1.30 -1.22 0.54 -1.08 0.54 -1.05 0.54 -1.06 0.50 -0.50
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Nα Nβ
Fig. S 7: The overlay of reactant and intermediate structures from Nα (left) and Nβ (right)
positions. The reactant and intermediate are shown in red and black, respectively.
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Fig. S8: Calculated energy profile for the concerted mechanism from Nα and Nβ positions.
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Fig. S9: Intrinsic reaction coordinate results from TSα and TSβ to React and Prod for concerted
mechanism.
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Fig. S 10: Calculated free energy profiles at 298.15 K for both mechanisms via Nβ site and
stepwise mechanism via Nα site using four different hybrid functionals. The lowest and highest
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