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Methodology
The highest occupied molecular orbital (HOMO) and the lowest unoccupied orbital (LUMO) of
2-2AEPy and gap energy (ALE,) between them were evaluated. The HOMO-LUMO energies
are usually used to calculate some molecular properties such as ionization potential (1), electron
affinity(A), absolute hardness(n), softness(s), chemical potential(x+) and absolute electronega-
tivity (x) as follows:
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Some Molecular properties of the activator are announced in Table S1.

Table S1: Molecular properties (eV) of activator computed at B3LYP-D3/6-31+g** method

HOMO LUMO AFE X n S 1
2-2AEPy -6.4 -1.0 54 2.7 2.7 0.2 2.7
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A general mechanism for the activation of carbonic anhydrase with activators has been
been propounded based on Eq (7).

[(His)3Zn™?(Hy0)+Activator(Ac)] = [(His)3Zn?(Hy0)/Ac] = [(His)3Zn™?(OH )|+ AcH™*
(7

where [(His)3Zn*?(H,0)/Ac] denote the enzyme-activator complex.

Thermodynamic functions have been evaluated from the following equations. Total enthalpies

of the studied species X, (H(X)), at the temperature T are usually evaluated for the inactive form

to the active form.

H(X) :E0+ZPE+EtT’ans+Erot+Evzb+RT (8)

where [ is determined total electronic energy, ZPE stands for zero-point energy, Fi qns, Erot
and F,;, are the translational, rotational and vibrational contributions to the enthalpy, respec-
tively. Eventually, to convert energy to enthalpy, the PV-work term that denoted by RT is added.
The standard enthalpy changes of the reaction (AH?,, ) from the expression (7) is calculated as:

AH, = [H%Zn(]I)OH* + Hiop+] — [H%Zn([I)OHQ + Hj,] )
Identically, AS?  is gained by

rea

AS)., = [S%Zn(]I)OH* + Shm+] — [S%Zn(II)OHQ + 5% (10)
Then using AG = AH — TAS, AG®, was determined.
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Fig. S 1: The low-energy docked positions of 2-2AEPy into hCA Il were obtained by 300
separate AuthoDock4 runs. The magenta color (pos0) shows the initial position, where 2-
2AEPy replaces the HIS300 position reported in the X-ray. The main difference between posO
and posl is the presence of three crystallographic molecules that separate 2-2AEPy (located
in the ligand X-ray position) from the Zn active site; otherwise, they are quite similar. The
scored binding energies of pos0 are around -5.7 kcal.mol~! and those of pos2 are around -5.5
kcal.mol !, indicating that pos0 is the preferred site and also matches better with the X-ray
position of HIS300.
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Fig. S2: 10 ns simulations on various models studied in the work. Pos1 and Pos2 are obtained
by docking, and Pos0 is based on the location of the original ligand of 2ABE (HIS300 acti-
vator). In the PosO MD simulations, we preserved all four crystallographic water molecules
(Zn-bounded) plus three neighboring water molecules. In Pos1, which is very close to Zn, we
just kept the Zn-bounded water molecules, and the MD simulations reveal that after around 4
ns, the ligand gets out of the portien environment.
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Additional results concerning the structures of hCA II in both forms
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Fig. S3: The optimized structure of hCA II active site in the zinc hydroxide (a), inactive form
(b) and schematic of X-ray crystallographic (c). All bond lengths and bond angles are given in

(A) and (°), respectively.
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Table S2: Chemical structure details of optimized geometry for the active and inactive form of
hCA I active site in biological environment using B3LYP-D3/6-31+g(2d,2p) and comparison
with X-ray data

Connected atoms Active form Inactive form X-ray
Bond distance (A)

Z/n-01 1.87 2.03 2.25
O1-H1 0.96 1.02 0.97
Z/n-N3 2.09 2.01 2.09
Zn-N8§ 2.04 2.03 2.22
Zn-N9 2.05 2.00 2.10
N3-C4 1.33 1.33 1.32
N8-C7 1.33 1.33 1.32
NO9-C10 1.38 1.39 1.37
Standard deviation 0.06 0.05

Bond angle (°)

O1-Zn-N3 105.57 105.30 106.08
O1-Zn-N8 130.53 116.17 106.79
O1-Zn-N9 98.35 101.02 102.32
N3-Zn-N8 94.95 108.31 110.95
N3-Zn-N9 107.17 106.12 103.00
NO9-Zn-N8 114.47 119.02 118.22
N3-C4-N5 110.54 109.27 108.37
Standard deviation 5.27 2.45
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Geometries and relative energies of reactant for activator from the Na position

The large number of structures (>50) geometries of the reactant for the activator from the N
position have been optimized. The sixteen lowest ones the structures and the energies are given.
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Fig. S4: Geometries and relative energies of the sixteen lowest energy reactants for the activator
from the Na position. The energies relative to React are given in kcal/mol.
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Geometries and relative energies of reactant for activator from the N/ position

The large number of structures (>40) geometries of the reactant for the activator from the N/
position have been optimized. The eight lowest ones the structures and the energies are given.
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Fig. S5: Geometries and relative energies of the eight lowest energy reactants for the activator
from the NS position. The energies relative to React are given in kcal/mol.
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Optimized structures of reactant for both of positions

Fig. S6: Optimized structure of the reactant for the activator from the N« position (a) and the
activator from the N position (b). Distances are given in angstrom.
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Table of NBO atomic charge for both mechanisms

Table S3: NBO atomic charge (in a.u) for stepwise and concerted mechanisms in biological
environment for Na and N3 positions.

Zn Ol HI O2 H2 O3 H3 0O4 H4 N

Reactae 1.32 -1.06 0.55 -1.04 0.54 -1.05 0.54 -1.08 0.52 -0.94
React 1.32 -1.06 0.55 -1.04 0.54 -1.05 0.54 -1.06 0.52 -0.53

Stepwise

TSlee  1.31 -1.21 0.56 -0.98 0.55 -1.01 0.55 -1.07 0.52 -0.93
TS13 1.31 -1.17 0.56 -1.01 0.56 -1.04 0.55 -1.06 0.52 -0.53

Intaw  1.32 -1.06 0.55 -1.04 0.53 -1.05 0.54 -1.06 0.55 -0.92
Intf3 1.32 -1.06 0.55 -1.04 0.54 -1.05 0.54 -1.06 0.53 -0.51

TS2a  1.32 -1.18 0.56 -1.02 0.55 -1.05 0.55 -1.06 0.52 0.93
TS25 1.31 -1.16 0.55 -1.05 0.55 -1.04 0.55 -1.06 0.52 0.52

Concerted

TSa 1.33 -1.10 0.55 -1.05 0.55 -1.06 0.55 -1.09 0.51 -0.92
TSpS 1.31 -1.18 0.55 -1.06 0.55 -1.06 0.55 -1.07 0.51 -0.52

Prodav 1.29 -1.22 0.54 -1.07 0.54 -1.05 0.54 -1.06 0.49 -0.86
Prodg 1.30 -1.22 0.54 -1.08 0.54 -1.05 0.54 -1.06 0.50 -0.50
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Fig. S7: The overlay of reactant and intermediate structures from Na (left) and NS (right)
positions. The reactant and intermediate are shown in red and black, respectively.
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Fig. S8: Calculated energy profile for the concerted mechanism from Na and N3 positions.
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Fig. S9: Intrinsic reaction coordinate results from TS« and TS/3 to React and Prod for concerted
mechanism.
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Fig. S10: Calculated free energy profiles at 298.15 K for both mechanisms via N site and
stepwise mechanism via N site using four different hybrid functionals. The lowest and highest
barriers to energy are related to Cam-B3LYP and wB97X-D, respectively.
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