Hetero-Bimetallic Paddlewheel Complexes for Enhanced CO₂ Reduction Selectivity: A First Principles Study

Gavin A. McCarver,* Taner Yildirim, and Wei Zhou

National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899-6102, United States

E-mail: gavin.mccarver@nist.gov

SUPPLEMENTARY INFORMATION

List of Tables

S1 Adsorption free energies of reaction products on the paddlewheel complexe					
	Negative values indicate favorable binding. Values given in eV. \ldots .	3			
S2	Geometric parameters of the paddlewheel complexes. Intermetallic bond dis-				
	tances $(R_{Cu\mathchar`X})$ given in Å and bond angles $(A_{O\mathchar`X}\mathchar`)$ given in degrees	3			
S3	Löwdin spin populations and relative electronic energies on the paddlewheel				
	complexes. AF refers to an antiferromagnetically coupled spin state while FM				
	refers to a ferromagnetic spin state. Column headings refer to the metal site				
	with X being the substituent metal (Mn, Co, Ni, or Cu).	4			

List of Figures

S1	Free energy reaction mechanism for the reduction of CO_2 on the Cu site of					
	the Cu-Zn paddlewheel complex. Competing intermediates shown in red.					
	Limiting potential values shown in blue and given in eV. \ldots .	4				
S2	Free energy reaction mechanism for the reduction of CO_2 on the Zn site of					
	the Cu-Zn paddlewheel complex. Competing intermediates shown in red.					
	Limiting potential values shown in blue and given in eV. \ldots	5				
S3	Free energy reaction mechanism for the reduction of CO_2 on the Cu site of					
	the Cu-Co paddlewheel complex. Competing intermediates shown in red.					
	Limiting potential values shown in blue and given in eV. \ldots \ldots \ldots	5				

Table S1:	Adsorption	free ene	rgies of	reaction	products	on th	e paddlewheel	complexes.
Negative values indicate favorable binding. Values given in eV.								

	Site	H_2	CO_2	HCOOH	CO	$\rm CH_2O$	CH ₃ OH	CH_4	H_2O
Cu-Cu	Cu	0.27	0.40	0.20	0.31	0.15	0.12	0.33	0.14
Cu Mn	Cu	0.31	0.45	0.33	-0.20	0.24	0.23	0.40	0.18
Ou-MII	Mn	0.07	0.07	-0.37	-0.23	-0.32	-0.42	0.08	-0.50
Cu Co	Cu	0.21	0.42	0.12	0.14	0.09	0.01	0.29	-0.02
0 u -00	Co	0.12	0.12	-0.00	-0.23	-0.07	-0.11	0.18	-0.13
Cu Ni	Cu	0.27	0.43	0.23	0.11	0.16	0.11	0.36	0.09
Ou-M	Ni	0.22	0.33	0.22	0.15	0.15	0.11	0.32	0.19

Table S2: Geometric parameters of the paddle wheel complexes. Intermetallic bond distances $(R_{\rm Cu-X})$ given in Å and bond angles $(A_{\rm O-X-O})$ given in degrees.

	R _{Cu-X}	A _{O-Cu-O}	A _{O-X-O}
Cu-Mn	2.812	175.5	152.9
Cu-Co	2.438	170.6	178.8
Cu-Ni	2.445	171.1	177.9
Cu-Cu	2.573	172.0	172.0

Table S3: Löwdin spin populations and relative electronic energies on the paddlewheel complexes. AF refers to an antiferromagnetically coupled spin state while FM refers to a ferromagnetic spin state. Column headings refer to the metal site with X being the substituent metal (Mn, Co, Ni, or Cu).

	Spin State	Cu	Х	Relative Energy (kcal mol ⁻¹)
Cu Cu	FM3	0.6180	0.6180	1.7
Ou-Ou	AF1	0.6101	-0.6101	0.0
Cu Mn	FM7	0.6534	4.6600	1.3
Cu-MII	AF5	-0.5301	4.6028	0.0
	FM5	0.6585	2.6129	3.6
$C_{\rm P}$	AF3	-0.5318	2.6066	3.3
Cu-C0	FM3	0.6717	0.9552	0.0
	AF1	0.5534	-0.9784	1.0
Cu Ni	FM4	0.6683	1.6150	4.8
Ou-INI	FM2	0.6296	0.0061	0.0

Figure S1: Free energy reaction mechanism for the reduction of CO_2 on the Cu site of the Cu-Zn paddlewheel complex. Competing intermediates shown in red. Limiting potential values shown in blue and given in eV.

Figure S2: Free energy reaction mechanism for the reduction of CO_2 on the Zn site of the Cu-Zn paddlewheel complex. Competing intermediates shown in red. Limiting potential values shown in blue and given in eV.

Figure S3: Free energy reaction mechanism for the reduction of CO_2 on the Cu site of the Cu-Co paddlewheel complex. Competing intermediates shown in red. Limiting potential values shown in blue and given in eV.