Supplementary Information for "Analysis of two overlapping fragmentation approaches in density matrix construction: GMBE-DM vs ADMA"

Francisco Ballesteros and Ka Un Lao*

Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284 USA

TABLE S1: MAEs in millihartree (mH) for $(H_2O)_{N=6-55}$ at the level of HF/6-31G(d) and HF/def2-TZVPPD using the DM-based GMBE(1)-DM, ADMA, ADMA-S, ADMA-F, and ADMA-F-S approaches with respect to the supersystem results.

Method	MAE
GMBE(1)-DM ^a	16.3
ADMA ^a	101.5
ADMA-S ^a	434.5
ADMA-F ^a	86.0
ADMA-F-S ^a	319.6
GMBE(1)-DM ^b	19.5
$ADMA^b$	613.0
ADMA-S ^{b}	2524.0
ADMA- F^b	650.1
ADMA-F-S ^b	2214.0

TABLE S2: MAEs in milliHartree (mH) for $(H_2O)_{30}$ with a single ion including eight anions (F⁻, Cl⁻, Br⁻, NO₃⁻, H₂PO₄⁻, SCN⁻, CO₃²⁻, and SO₄²⁻) and and four cations (Li⁺, Na⁺, K⁺, and NH₄⁺) being inside or outside of the water cluster using the DM-based GMBE(1)-DM, ADMA, ADMA-S, ADMA-F, and ADMA-F-S approaches with respect to the supersystem calculations at the level of HF/6-31G(d) and HF/def2-TZVPPD.

Method	Cation	Anion	Inside	Outside	Overall
GMBE(1)-DM ^a	31.2	16.1	28.4	13.8	21.1
$ADMA^{a}$	64.2	58.9	59.2	62.0	60.6
ADMA-S ^a	213.1	517.8	466.9	365.6	416.2
ADMA-F ^a	73.9	42.3	51.2	54.5	52.8
ADMA-F-S ^a	540.0	398.9	585.8	306.1	445.9
GMBE(1)-DM ^b	7.3	27.0	29.1	11.9	20.5
$ADMA^b$	354.0	403.3	311.7	462.1	386.9
ADMA-S ^{b}	1859.0	2075.4	1577.4	2429.1	2003.3
$ADMA-F^b$	466.0	700.0	633.2	610.8	622.0
ADMA-F-S ^b	2087.4	2503.8	2677.9	2052.1	2365.0

^aHF/6-31G(d). ^bHF/def2-TZVPPD.