Transition Metal Small Clusters Anchored on Biphenylene for

Effective Electrocatalytic Nitrogen Reduction

Yan Gao^{a, b}, Qingchen Li^b, Zhili Yin^a, Haifeng Wang^{b,*}, Zhong Wei^{a,*} and Junfeng Gao^{c,*}

^aSchool of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China. Email: steven_weiz@sina.com.

^bDepartment of Physics, College of Science, Shihezi University, Shiheizi 832003, China. Email: whfeng@shzu.edu.cn.

^cKey Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China. Email: gaojf@dlut.edu.cn.

Table of Contents

Fig. S1 The optimized structures and relative energies of TM₁₋₄ clusters anchored on BPN sheet

taking Ru as an example.

Fig. S2 The most stable structures for nine TM₁₋₄ clusters anchored on BPN sheet.

Fig. S3 Possible stable structures of N2 adsorption on Run@BPN systems.

Fig. S4 The Gibbs free energy profile ΔG (*N₂) of TM₂ and TM₄ clusters anchored on BPN sheet.

Fig. S5 Variation of energy with time for AIMD simulation of $W_2/Ru_2/Mo_4$ clusters anchored on BPN sheet at 300 and 600 K for a period of 10 ps.

Figure S6. Bader charge transfers (|e|) of the TM₁₋₄@BPN with the number of TM atoms.

Table S1 Bader charge dispersion (e) of the Ru₁₋₄@BPN and Re₃-, Mo₃@BPN catalysts..

Table S2 Total Bader charge dispersion (|e|) of the TM₁₋₄@BPN catalysts.

Table S3 Bader charge dispersion (|e|) of the TM₂@BPN catalysts.

Table S4 Zero-point and entropic corrections to the free energy of the gas phase and the adsorbed species for the screened six types of catalysts.

Table S5 The optimized geometry of screened catalysts W2@BPN, Ru2@BPN and M04@BPN.

Ru ₁ @BPN					
	H_1	H ₂	H_3	T_1	
Initial					
Final					
Relative energy/eV	0	0.26	0.50	Move to H_1	
	T ₂	B ₁	B ₂	B ₃	
Initial					
Final					
Relative energy/eV	Move to H ₂	Move to H ₁	Move to H ₁	Move to H ₂	

Ru ₂ @BPN					
Sites					
Relative	0	0.28	0.10	0.37	
Sites					
Relative energy/eV	0.69	0.72	0.79	1.37	
		Ru ₃ @BPN			
Sites					
Relative energy/eV	0	0.05	0.06	0.11	
	0.56	0.65	0.84		

	Ru ₄ @BPN			
Sites				
Relative energy/eV	0	0.10		

Fig. S1 The optimized structures and relative energies of Ru_{1-4} clusters anchored on BPN sheet.

	TM = V, Fe, Ni, Mo, Ru, Rh, W, Re, Ir				
TM ₁ @BP N					
	Type 1 TM=V,	Fe	TM = Ni,	Type 2 Mo, Ru, Rh, W, Re, Ir	
TM2@BP N					
	Type 1 TM = V, Fe, W	Ty _l TM=Ni, I	pe 2 Ru, Rh, Ir	Type 3 TM = Mo, Re	
TM3@BP N					
	TM =	V, Fe, Ni, Mo	o, Ru, Rh, W, F	Re, Ir	
TM4@BP N					

Fig. S2 The most stable structures for nine TM_{1-4} clusters anchored on BPN sheet.

Structures of N ₂ on Ru ₂₋₄ @BPN					
Ru ₂ @BPN					
Sites	Side on	End on-1	End on-2		
Relative energy/eV	/	0	0.19		
Ru ₃ @BPN					
Sites	Side on-1	Side on-2	End on-1	End on-2	
Energy/eV	0	0.05	0	0.18	
Ru4@BPN					
Sites	Side on-1	Side on-2	Side on-3	Side on-4	
Relative energy/eV	0	0.35	0.55	0.53	
Ru ₄ @BPN Sites	End on-1	End on-2			
Relative	0	0.48			

energy/eV				
-----------	--	--	--	--

Fig. S3 Possible stable structures of N_2 adsorption on $Ru_n@BPN$ (n=2-4) systems.

Fig. S4. The Gibbs free energy profile ΔG (*N₂) of TM₂ and TM₄ clusters anchored on BPN sheet. Note the end-on manner of N₂ adsorption over V₂@BPN can't be obtained.

Figure S5. Variation of energy with time for AIMD simulation of $W_2/Ru_2/Mo_4$ clusters anchored on BPN sheet at 300 and 600 K for a period of 10 ps.

Figure S6. Bader charge transfers (|e|) of the TM_{1.4}@BPN with the number of TM atoms.

Table S1 Bader charge dispersion (|e|) of the Ru_{1.4}@BPN and Re₃- and Mo₃@BPN catalysts.

Atom	Charge of Ru _l @BPN	Charge of Ru ₂ @BPN	Charge of Ru ₃ @BPN	Charge of Ru ₄ @BPN	Charge of Re ₃ @BPN	Charge of Mo ₃ @BPN
1	+0.33	+0.19	+0.37	-0.20	-0.06	-0.10
2		+0.19	+0.37	+0.35	+0.47	+0.47

3		-0.22	+0.38	+0.48	+0.50
1			+0.33	Σ	
Num.	XX				

Table S2 Total Bader charge dispersion (|e|) of the TM₁₋₄@BPN catalysts.

	Total Charge Transfers (e)					
Atoms	TM ₁ @BPN	TM ₂ @BPN	TM ₃ @BPN	TM ₄ @BPN		
V	+0.87	+1.49	+1.71	+1.69		
Fe	+0.54	+0.77	+0.91	+1.02		
Ni	+0.45	+0.46	+0.46	+0.71		
Мо	+0.64	+0.80	+0.87	+1.28		
Ru	+0.33	+0.38	+0.52	+0.86		
Rh	+0.25	+0.35	+0.26	+0.45		
W	+0.47	+0.92	+1.09	+1.55		
Re	+0.34	+0.69	+0.89	+1.28		
Ir	+0.13	+0.19	+0.26	+0.47		

Table S3 Bader charge dispersion (|e|) of the TM₂@BPN catalysts.

	Bader charge	Bader charge
DACs	dispersion (e) of	dispersion (e) of
	atom 1	atom 2
V ₂ @BPN	+0.72	+0.77
Fe ₂ @BPN	+0.37	+0.39
Ni ₂ @BPN	+0.25	+0.21
Mo ₂ @BPN	+0.41	+0.53

Ru ₂ @BPN	+0.19	+0.27
Rh ₂ @BPN	+0.17	+0.18
W ₂ @BPN	+0.52	+0.37
Re ₂ @BPN	+0.34	+0.35
Ir ₂ @BPN	+0.12	+0.04

Table S4 Zero-point and entropic corrections to the free energy of the gas phase and the adsorbed species for the screened three types of catalysts ($W_2/Ru_2/Mo_4@BPN$).

(a) Zero-point and entropic corrections to the free energy of the gas phase and the adsorbed species on $Ru_2@BPN$ catalysts via the enzymatic pathway.

Name	E /eV	E_{ZPE}/eV	TS/eV	G/eV
H ₂	-6.76565715	0.268608	0.4019062	-6.89895535
N_2	-16.62627336	0.149570	0.59182775	-17.06853111
NH ₃	-19.54133424	0.909892	0.5951074	-19.22654964
Ru ₂ @BPN	-486.967	0.05684	0.2271903	-487.1373503
*N*N	-504.39840	0.263233	0.262526	-504.397693
*N*NH	-507.75419	0.580410	0.301215	-507.474995
*NH*NH	-510.81563	0.905457	0.332322	-510.242495
*NH*NH ₂	-495.90844	0.158166	0.252146	-496.00282
*NH ₂ *NH ₂	-499.72261	0.431923	0.264371	-499.555058
*NH ₂	-503.92511	0.777884	0.276249	-503.423475
*NH ₃	-507.30855	1.077951	0.399400	-506.629999

(b) Zero-point and entropic corrections to the free energy of the gas phase and the adsorbed species on $W_2@BPN$ catalysts via the consecutive pathway.

	Name	E /eV	E_{ZPE}/eV	TS/eV	G/eV
W	V ₂ @BPN	-492.703	0.051461	0.24060705	-492.8921461
	*N*N	-510.754	0.248102	0.2927833	-510.7986813
:	*N*NH	-514.2436	0.551795	0.28652215	-513.9783272
2	*N*NH ₂	-517.69413	0.902867	0.38133385	-517.1725969
	*N	-502.12865	0.139228	0.30142965	-502.2908517
	*NH	-506.2148	0.431923	0.264371	-506.047248
	*NH ₂	-509.80106	0.777884	0.276249	-509.299425
	*NH ₃	-513.62218	1.077951	0.3994	-512.943629

(c) Zero-point and entropic corrections to the free energy of the gas phase and the adsorbed species on Mo₄@BPN catalysts via the enzymatic pathway.

Name	E /eV	E_{ZPE}/eV	TS/eV	G/eV
Mo ₄ @BPN	-508.80016	0.12636	0.430841	-509.104641
*N*N	-526.27272	0.318484	0.54814	-526.502376

*N*NH	-529.88919	0.629341	0.520026	-529.779875
*NH*NH	-533.6458	0.970263	0.477964	-533.153501
*NH*NH ₂	-537.3689	1.330429	0.479917	-536.518388
*NH ₂ *NH ₂	-540.55188	1.628086	0.589149	-539.512943
*NH ₂	-525.99895	0.801735	0.54515	-525.742365
*NH ₃	-529.77104	1.157585	0.569335	-529.18279

(d) Zero-point and entropic corrections to the free energy of the gas phase and the adsorbed species on $Mo_4@BPN$ catalysts via the consecutive pathway.

Name	E /eV	E_{ZPE}/eV	TS/eV	G/eV
Mo ₄ @BPN	-508.80016	0.12636	0.430841	-509.104641
*N*N	-526.27272	0.318484	0.54814	-526.502376
*N*NH	-529.88919	0.629341	0.520026	-529.779875
*N*NH ₂	-533.84784	0.989463	0.488202	-533.346579
*N	-518.5529	0.236008	0.430523	-518.747415
*NH	-522.43934	0.533874	0.428223	-522.333689
*NH ₂	-525.97361	0.801735	0.54515	-525.717025
*NH ₃	-529.7828	1.157585	0.569335	-529.19455

(e) Zero-point and entropic corrections to the free energy of the gas phase and the adsorbed species on $Mo_4@BPN$ catalysts via the enzymatic pathway using PBE+ U functional.

Name	E /eV	E_{ZPE}/eV	TS/eV	G/eV
Mo ₄ @BPN	-494.574	0.090803	0.522202	-495.005399
*N*N	-512.941	0.280524	0.585392	-513.245868
*N*NH	-516.784	0.578571	0.505436	-516.710865
*N*NH ₂	-520.559	0.945462	0.561028	-520.174566
*N	-505.224	0.175477	0.483677	-505.5322
*NH	-509.165	0.466069	0.439419	-509.13835
*NH ₂	-512.657	0.803384	0.532326	-512.385942
*NH ₃	-517.076	1.098221	0.611879	-516.589658

(f) Zero-point and entropic corrections to the free energy of the gas phase and the adsorbed species on the water solvation catalyst $Mo_4@BPN$ via the enzymatic pathway.

Name	E /eV	E _{ZPE} /eV	TS/eV	G/eV
Mo ₄ @BPN	-513.3199405	0.12636	0.430841	-513.6244215
*N*N	-531.0950405	0.318484	0.54814	-531.3246965
*N*NH	-534.8721405	0.629341	0.520026	-534.7628255

*N*NH ₂	-53	38.8083405	0.98	9463	0.488202	-538.	3070795
*N	-52	23.6277405	0.23	6008	0.430523	-523.	8222555
*NH	-52	27.6133405	0.53	3874	0.428223	-527.	5076895
*NH ₂	-53	31.0011405	0.80	1735	0.54515	-530.	7445555
*NH ₃	-53	34.9187405	1.15	7585	0.569335	-534.	3304905
Mo ₄ @BP	*NI*NI	*N*NH	*NI*NIH.	*NI	*NH	*NH.	*NH.
Ν	. 1 N . 1 N	11.1111	11 11112	¹ IN	1111	11112	11113
ંે જ જે	ిత ాళ్యి 8	^{કર} કુરુદ્ધ [ે] હ	ಕ್ಕೆ ಕ್ರಿ ಸಿಕ್ಕೆ ಕ್ರಿಂಕ್ಷ	یا بھی ہور ہو رقب ہو کو کو رو	x € 2 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<mark>یہ</mark> رہے۔ ایک رہے۔ ایک رہے ک	૾ૺૢૢ૾૾ૺૼ૾ૼૺ

Table S5	The optimized	geometry of s	screened cataly	sts W ₂ @BPN,	, Ru_2 (BPN)	and Mo ₄ @	BPN.
W ₂ @BPN	J						

1.000000000000000			
11.27509975429999	0.0000000000000000000000000000000000000	0000	0.00000000000000000
0.0000000000000000000000000000000000000	000 13.574999809299	9995	0.00000000000000000
0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0000	19.9498996734999992
C W			
54 2			
Direct			
0.0589174744069909	0.0495851248695908	0.40023	84903255636
0.2633317109073119	0.0495806496263571	0.40008	357061860258
0.1611261756663091	0.1092192449380177	0.39891	77742597703
0.1611301479008734	0.2157252855118958	0.39459	943342205174
0.2630947273830969	0.2752648362371153	0.39134	12752899832
0.0591622583865537	0.2752765854056121	0.39147	789590181471
0.3928786734332452	0.0497484775005090	0.40218	389436769226
0.5966614428488122	0.0500111267471929	0.40680	076208994376
0.4947101049304376	0.1101504410715540	0.40478	356932349537
0.4945782673025781	0.2169762708547752	0.40367	731896001925
0.5974516717192008	0.2776196230431351	0.40808	387547739839
0.3931766933982671	0.2756255724965028	0.39484	29321713395
0.7255973299261240	0.0500144180927339	0.40689	983121349877
0.9293705846550847	0.0497559857097074	0.40242	258664652202
0.8275397397971801	0.1101683865092010	0.40498	309051175812
0.8276768791960563	0.2169966979179701	0.40387	797035925376
0.9290931213100785	0.2756458345542566	0.39508	347146043651
0.7247843678645498	0.2776290140044043	0.40820	94914421979
0.0596926398076315	0.3816575345608087	0.38606	503910281712
0.2625607516402579	0.3816480245954263	0.38591	85436716451
0.1611206648062264	0.4422326458999981	0.38391	62685206366
0.1611187937974017	0.5498961896422832	0.38326	506678953852
0.2625827749291758	0.6104951225032631	0.38463	359507876160

0.0596637465067064	0.6104984381681485	0.3847368668738010
0.3920740093799090	0.3822935464852133	0.3882138716211749
0.5945661057499491	0.3869350669524249	0.4065063668243079
0.4907557330380824	0.4433791140110371	0.3903298661144237
0.4907474716694654	0.5487427807611269	0.3899226997659695
0.5945489494768147	0.6053796984174608	0.4058281448728789
0.3921142057236590	0.6098196903524451	0.3871557070513979
0.7276700103539823	0.3869552076006705	0.4066660725882638
0.9301969133977538	0.3823201708881855	0.3884516458412848
0.8315132186842914	0.4433945970284379	0.3905368359112913
0.8315196492639357	0.5487485340414193	0.3901037765808522
0.9301460170804313	0.6098194405390510	0.3873362744751034
0.7276821450454155	0.6053759018668259	0.4059283752541211
0.0591276789099236	0.7169279282103712	0.3895111461692129
0.2631142099215002	0.7169258269979718	0.3894212136743899
0.1611224154490180	0.7764786952111886	0.3925582349868447
0.1611219282130049	0.8829445693674245	0.3975601119022108
0.2633399908683692	0.9425716923481026	0.3994756169194555
0.0589136032166025	0.9425746033699010	0.3996058449027370
0.3932120913705668	0.7165764063389618	0.3932150631853355
0.5974370811845560	0.7146721457288087	0.4068756683566779
0.4945577796432790	0.7752566741332914	0.4021739446470084
0.4947370294624417	0.8820728156031902	0.4036957810751731
0.5966724420481641	0.9421904971830229	0.4062648905283081
0.3929030116174536	0.9424685483113694	0.4016290747744376
0.7247829549214861	0.7146695879221815	0.4069481690087845
0.9290412746732026	0.7165762133593947	0.3933696855544330
0.8276826289970138	0.7752553969000413	0.4023027441175687
0.8275083854972705	0.8820720492085941	0.4038402673407552
0.9293442970523325	0.9424756216854481	0.4018362522791251
0.7255745348863480	0.9421923780590198	0.4063424683482124
0.6607884248779115	0.4194884207954490	0.5086704309903570
0.6607980891407257	0.5744860463010018	0.5081461766820001

Ru₂@BPN

1.00000000000000		
11.2750997542999993	0.000000000000000000	0.00000000000000000
0.000000000000000000	13.5749998092999995	0.00000000000000000
0.000000000000000000	0.000000000000000000	19.9498996734999992
C Ru		
54 2		

Direct

 $0.0594514372053013 \quad 0.0491223121827443 \quad 0.4004455403600795$

0.2628183981555616	0.0491162224175016	0.4002725818513345
0.1611411239129292	0.1091983332062871	0.3989790089307612
0.1611473545431312	0.2156572777507586	0.3944176452955374
0.2633537784402549	0.2750925354756877	0.3912892642126747
0.0589228684828394	0.2750926884349092	0.3914025292357582
0.3931819769609959	0.0492077058036947	0.4022917303620532
0.5964079161121145	0.0497454702762011	0.4065250089367568
0.4945643068824087	0.1097859190815099	0.4047520944828795
0.4940209185679749	0.2165307657729282	0.4037664768384216
0.5976049677687240	0.2765492320293596	0.4085270467429145
0.3929790190409399	0.2750360691664700	0.3949770130486444
0.7258316850542860	0.0497625279207157	0.4066112996973351
0.9290748978459720	0.0492158726475708	0.4025562415601601
0.8276710225232944	0.1098047302131358	0.4049768313405925
0.8282345151879575	0.2165564862900148	0.4040154865113677
0.9293008096068157	0.2750503414303661	0.3952093649248325
0.7246276456536968	0.2765642390250592	0.4086579650405436
0.0594127350648211	0.3818190551561336	0.3861119560843703
0.2628748860514683	0.3818163718353066	0.3859839744141919
0.1611388999420558	0.4422231329216641	0.3840094675972271
0.1611199048526192	0.5498470156973174	0.3833007232666601
0.2628939203922482	0.6102753465007020	0.3846340169003444
0.0593465655459378	0.6102778256820491	0.3847245551763357
0.3921422117181332	0.3824706897807940	0.3886461432882090
0.5953085987891718	0.3866002811236139	0.4065236248661834
0.4904996651125587	0.4432801193981287	0.3914012024869762
0.4904512708481262	0.5488530449948557	0.3910996322395429
0.5952589983003455	0.6056350858796827	0.4062292625120396
0.3921712320083263	0.6096130213353990	0.3876512816765993
0.7269202921030081	0.3866147196496910	0.4066765246277272
0.9301477887307265	0.3825029147613729	0.3888996467610796
0.8317694304057177	0.4432915601564792	0.3916543636608088
0.8318088250985713	0.5488618719450939	0.3913139906611321
0.9300767866710999	0.6096288816091964	0.3878257885230222
0.7269655142177016	0.6056447053820057	0.4063367989781343
0.0588886508576928	0.7170593181413263	0.3893047970562256
0.2633792071099238	0.7170618253018458	0.3892271038198722
0.1611280371665674	0.7764818987476561	0.3921334562409699
0.1611269785429729	0.8828715469254622	0.3973904365101160
0.2628288453412909	0.9429030951101118	0.3995765804817195
0.0594265522157660	0.9429141912458606	0.3997351917760849
0.3929916232000478	0.7171383403028136	0.3933141316006921
0.5975912737646210	0.7156493180750255	0.4074272760745959
0.4940273863786474	0.7756595140347042	0.4021050613296004

0.4946667875664277	0.8824160138349738	0.4034749596105419
0.5964262317612669	0.9425217077308149	0.4059227541081154
0.3932389407266576	0.9429260570364437	0.4016732708812158
0.7246223288251441	0.7156561325959786	0.4074948786541073
0.9292602284301026	0.7171507079072843	0.3934605788522733
0.8282127137337739	0.7756663309235051	0.4022521263587820
0.8275771543710706	0.8824331655937716	0.4036591196567976
0.9290086175623773	0.9429380187122692	0.4019181249937793
0.7258254142832005	0.9425341618250020	0.4059953423848243
0.6606926984725138	0.4134950703142283	0.5044511751938174
0.6607731852271169	0.5816406091460089	0.5042613294577387

```
Mo<sub>4</sub>@BPN
```

1.00000000000000		
11.2750997542999993	0.000000000000000000	0.0000000000000000000000000000000000000
0.000000000000000000	13.5749998092999995	0.000000000000000000
0.000000000000000000	0.000000000000000000	19.9498996734999992
C Mo		

54 4

```
Direct
```

0.0603356483362140	0.0495444364726304	0.4032408234430238
0.2643348967121536	0.0495310739241941	0.4018021330260031
0.1623570977805098	0.1090591088527073	0.4016130453767521
0.1623446336180822	0.2157665756115182	0.3997066826889022
0.2639318775219716	0.2750282893512027	0.3970707073355589
0.0594972424394525	0.2751700009267679	0.3994370461085991
0.3933381658717161	0.0495775772835165	0.4013902187467506
0.5976502103159540	0.0496097491974529	0.4015312291251378
0.4954806384587012	0.1091743310898629	0.4006191324040599
0.4954715990058547	0.2158794415197920	0.3973956475782510
0.5980069061680368	0.2751880604776661	0.3952768756504343
0.3929797656547951	0.2751904073656503	0.3951908376675863
0.7266665905103197	0.0495652614106258	0.4020218002929450
0.9306937482226363	0.0495565234774761	0.4033417019745780
0.8286786495308393	0.1090915190418623	0.4018085760111931
0.8287016221934722	0.2158006498518329	0.3998412138685196
0.9315411811657364	0.2751891144026231	0.3994908902106213
0.7270655282729349	0.2750445993523722	0.3972224763752863
0.0596043434531760	0.3832138659681742	0.3982809771418641
0.2640747188020212	0.3834318363116257	0.3942471098426321
0.1614994269610094	0.4428374085180150	0.3964226089623099
0.1607879091734085	0.5491662254760438	0.3990382531855832
0.2646446178263883	0.6088430632048936	0.3952075548471018

0.0607442823851517	0.6089600561019901	0.4051254340921042
0.3919904867740814	0.3826518887251787	0.3908496744924503
0.5989938039624563	0.3826551054832014	0.3909016639959566
0.4954991876762483	0.4425012202935734	0.3859164199986029
0.4954912251943305	0.5471228395368494	0.3792461886515963
0.5987092519360848	0.6082904489411467	0.3820607601037838
0.3922505929098801	0.6082522365162395	0.3821563828576101
0.7269253376109054	0.3834402486063294	0.3943455633904667
0.9314514957387110	0.3832336428001727	0.3983159163334995
0.8295292336913357	0.4428373817228301	0.3964450049518263
0.8302112705172007	0.5491822093374034	0.3989704632317388
0.9302891524436776	0.6089449847787394	0.4050762870744347
0.7263249070175014	0.6088694021595040	0.3951504364016006
0.0608535151597591	0.7159976343571156	0.4082793721894377
0.2650581420708276	0.7161613879948251	0.3982813231971030
0.1611102812341818	0.7759863148521994	0.4052964655264365
0.1619553950213053	0.8823978146560032	0.4045127528301329
0.2642770546878119	0.9419394675749476	0.4024182846650485
0.0600135041822166	0.9425232336480459	0.4049555529212087
0.3919827329626200	0.7178008499739859	0.3843737833190319
0.5989615406021213	0.7178277482707967	0.3842447214410122
0.4954807924577660	0.7768233548406572	0.3925212039903321
0.4954876853286280	0.8830570323113669	0.3992822457954130
0.5979404856599180	0.9421736282971441	0.4012942985709869
0.3930469021515896	0.9421667035456746	0.4012426500826530
0.7258960778858687	0.7161891128728889	0.3982089519703385
0.9301664616219816	0.7159918430418553	0.4082077232681665
0.8299012755927998	0.7759818750438650	0.4051871923266693
0.8290586442276647	0.8824104152304315	0.4045277143423476
0.9309914225589381	0.9425366834946025	0.4050214590436715
0.7267077722421817	0.9419554537539752	0.4025362053323274
0.3841479776892236	0.6585150177311095	0.4882822089638349
0.6065985509458940	0.6586408951289764	0.4882092353620111
0.4955381608927375	0.5023482784579224	0.5234327302183140
0.4958284479709846	0.6028346098299684	0.5948162562041401