Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information

Self-assembly of an amino acid derivative as anode interface layer for advanced alkaline Al-air batteries

Lei Guo^{*a,b,c}, Lei Zhu^{a,c}, Yue Huang^d, Yan Tan^{a,c}, Alessandra Gilda Ritacca^{e,f}, Xingwen Zheng^g, Senlin Leng^{a,c} and Baoguo Wang^b

^a School of Material and Chemical Engineering, Tongren University, Tongren 554300, China E-mail: chygl@gztrc.edu.cn

^b Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

^c Guizhou Provincial Key Laboratory for Cathode Materials of New Energy Battery, Tongren 554300, China

^d College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China

^e Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy

^fCenter for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy

^g Key Laboratory of Material Corrosion and Protection of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China

Supplementary Figures

Fig. S1 Diagram of hydrogen collection device by drainage method.

Fig. S2 Diagrams of (a) an integrated Al-air battery device and (b) dismantled components.

Fig. S3 Metallographic microscope images of Al under different treating conditions: (a) as-polished, (b) blank, (c) 4 M NaOH + 1.5 mM NBLT.

Quantum Chemical Calculations

The adsorption energy of adsorbate molecule on the metal slab, namely E_{ads} , was calculate by the following formula:¹

$$E_{\rm ads} = E_{\rm mol/slab} - (E_{\rm mol} + E_{\rm slab}) \tag{1}$$

where $E_{\text{mol/slab}}$ is the total energies of adsorbate molecules on slab model, E_{inh} is the total energy of isolated adsorbate molecule, E_{slab} is the total energy of the metal slab.

The charge density difference $(\Delta \rho)$ is determined by the electron densities of the whole adsorption system $(\rho_{\text{mol/surf}}(r))$, the isolated adsorbate molecules $(\rho_{\text{mol}}(r))$ and the clean Al(111) surface $(\rho_{\text{surf}}(r))$:²

$$\Delta \rho = \rho_{\text{mol/surf}}(r) - \rho_{\text{mol}}(r) - \rho_{\text{surf}}(r)$$
(2)

References

1 C. Gattinoni and A. Michaelides, *Faraday Discuss.*, 2015, **180**, 439-458.

2 S. B. Liu, Acta Phys. Chim. Sin., 2009, 25, 590-600.