Supporting Information for: Exploration of Biochemical Reactivity with a QM/MM Growing String Method

Neil R. McFarlane^[a], Jeremy N. Harvey^[a]

 [a] Department of Chemistry KU Leuven
B-3001 Leuven Celestijnenlaan 200f- box 2404, Belgium
E-Mail: neilrory.mcfarlane@kuleuven.be
E-Mail: jeremy.harvey@kuleuven.be

Additional Figures and Tables

Table S1: Chronological list of QM/MM studies of reactivity in BsCM. For each study, the starting PDB structure(s), the QM method and basis set, the MM forcefield, the barrier height (in kcal/mol) with standard deviation or range (where available) are provided.

PDB ID	QM method/Basis set	MM forcefield	Barrier height (kcal/mol)	Reference
2CHT	AM1	CHARMM	17.8	1
2CHT, 1COM	HF/6-31G(d)	Amber	24.8	2
2CHT, 1COM	MP2/6-31G(d)	Amber	6.4	2
N/R	B3LYP/6-31G(d)	Amber	1.4	3
1COM	AM1	CHARMM	35.7	4
2CHT	HF/4-31G//cc-pVDZ	CHARMM	19.7	5
2CHT	B3LYP/6-311+G(2d,p)//6-31G(d)	CHARMM	2.7 – 11.9	6
2CHT	AM1	CHARMM	24.5 - 31.6	6
2CHT	MP2/6-31+G(d)//6-31G(d)	CHARMM	7.4 - 11.0	7
2CHT	B3LYP/6-311+G(2d,p)//6-31G(d)	CHARMM	12.7 – 16.1	7
2CHT	B3LYP/6-31G(d)	CHARMM	12.0 ± 1.7	8
2CHT	B3LYP/aug-cc-pVTZ//cc-pVTZ	CHARMM	10.2 ± 1.8	9
2CHT	LCCSD(T0)/aug-cc-pVTZ//cc-pVTZ	CHARMM	13.1 ± 1.1	9
2CHT	B3LYP/6-31G(d)	CHARMM	11.3 ± 1.8	10
2CHT	B3LYP/6-31G(d)	Amber	12.1 ± 0.2	11
2CHT	B3LYP/def2-svp	Amber	15.1	12
N/A	Exp.		12.7 ± 0.4	13

We have searched the literature for the most well-known QM/MM studies into this system (collated chronologically in *Table S1*). Overall, five QM methods have emerged, and some minor variations in MM forcefield choice. The barrier has been most accurately calculated using LCCSD(T0), where the energy barrier is predicted to be 13.1 ± 1.1 kcal/mol ⁹ – in excellent agreement with experiment.¹³ However, the high computational expense means that this method has only been used for single-point calculations on a B3LYP optimised pathway. Taking the averages of the remaining four methods (using the upper end of the ranges from ref. ^{6,7}), we find barriers of 8.7 kcal/mol (MP2),^{2,7} 28.4 kcal/mol (AM1),^{1,4,6} 22.3 kcal/mol (HF),^{2,5} and 11.3 kcal/mol (B3LYP).^{3,6–12} When comparing to the known experimental value for this reaction,¹³ the most common choice for QM/MM reaction pathway generation is B3LYP. Removing the outlier predicted in reference ³, who calculate the barrier to be unreasonably small likely due to insufficient system preparation and/or sampling, we find the average barrier to be 12.7 kcal/mol – very similar to the experimental value.¹³ Across the studies reported herein, the size of the QM region, methods for system preparation, extent of sampling, among others, is not consistent, so these factors may also have some effect on the energy barriers.

Figure S1: RMSD of the polypeptide backbone α -carbons with respect to the starting configuration over 200 ns of simulation time, calculating the RMSD at every ns. From 68 ns, MD snapshots were taken systematically every 1 ns, as illustrated.

Figure S2: The dependency of the 'NAC' angle on the barrier height of the 117 pathways calculated herein. For a definition of the 'NAC' angle, please refer to ref. ¹⁴.

Figure S3: Variation of internal coordinates q_1 and q_2 averaged along 117 pathways generated herein. q_1 is defined as $d(C_3 - O_7)$, and q_2 is defined as $d(C_1 - C_9)$. An illustration of the relevant internal coordinates is given in the figure inset.

Figure S4: Variation of internal coordinates q_1 and q_2 for four of the 117 pathways generated herein. q_1 is defined as $d(C_3 - O_7)$, and q_2 is defined as $d(C_1 - C_9)$. An illustration of the relevant internal coordinates is given in the figure inset of **Figure S3**.

Figure S5: Variation of internal coordinates q_3 , q_4 , q_5 , and q_6 averaged along 117 pathways generated herein. q_3 is defined as $d(C_1 - C_{11})$, q_4 is defined as $d(C_2 - C_3)$, q_5 is defined as $d(O_7 - C_8)$, and q_6 is defined as $d(C_8 - C_9)$. An illustration of the relevant internal coordinates is given in the figure inset.

Figure S6: Variation of internal coordinates q_7 and q_8 averaged along 117 pathways generated herein. q_7 is defined as $\varphi(C_2 - C_3 - O_7 - C_8)$, and q_8 is defined as $\varphi(C_3 - O_7 - C_8 - C_9)$. An illustration of the relevant internal coordinates is given in the figure inset.

Figure S7: Comparison of using half-step or normal-step in the growth-phase of the QM/MM SE-GSM algorithm for five of the 117 pathways generated herein. A normal step is defined as steps of 0.1 Å and 5° for bonds and valence and/or dihedral angles, respectively. The half-step is half of these values.

Figure S8: Histogram of the distribution of barrier heights for the 117 reaction pathways obtained herein.

Figure S9: Four examples of QM/MM energy profiles which were deemed as discontinuous and therefore discarded from further analysis.

Additional Parameters

Chorismate Forcefield Parameters

<u>cho.itp</u>

; Created by cgenff_charmm2gmx.py

[moleculetype]	
------------------	--

<i>'</i> '			
		nrexcl	
	,,		nrexcl

[atoms]

	- -												
;	nr				type	e res	nr residue	atom	cgnr	charge	mass	typeB	chargeB
	mass	В											
; resi	due 1 CH	0 rt	р СНО	q	qsum	ו							
1	CG2DC1	1	СНО	C1	1	-0.200	12.011 ;						
2	CG2DC2	1	СНО	C2	2	-0.067	12.011 ;						
3	CG2DC2	1	СНО	C3	3	-0.386	12.011 ;						
4	CG311	1	СНО	C4	4	0.295	12.011 ;						
5	OG311	1	СНО	05	5	-0.638	15.999 ;						
6	CG311	1	СНО	C6	6	0.407 2	12.011 ;						
7	CG2DC1	1	СНО	C7	7	-0.319	12.011 ;						
8	OG301	1	СНО	08	8	-0.348	15.999 ;						
9	CG2D1O	1	СНО	C9	9	-0.205	12.011 ;						
10	CG2DC3	1	CHO	C10	10	-0.611	12.011	;					
11	CG2O3	1	СНО	C11	11	0.666	12.011 ;	;					
12	OG2D2	1	СНО	012	12	-0.740	15.999	;					
13	OG2D2	1	СНО	013	13	-0.740	15.999	;					
14	CG2O3	1	СНО	C14	14	0.897	12.011 ;	;					
15	OG2D2	1	СНО	015	15	-0.742	15.999	;					
16	OG2D2	1	СНО	016	16	-0.742	15.999	;					
17	HGP1	1	СНО	H17	17	0.414	1.008 ;						
18	HGA5	1	СНО	H18	18	0.230	1.008 ;						
19	HGA5	1	СНО	H19	19	0.230	1.008 ;						
20	HGA4	1	СНО	H20	20	0.145	1.008 ;						
21	HGA4	1	СНО	H21	21	0.124	1.008 ;						
22	HGA4	1	СНО	H22	22	0.150	1.008 ;						
23	HGA1	1	СНО	H23	23	0.090	1.008 ;						
24	HGA1	1	СНО	H24	24	0.090	1.008 ;						

c0

c1

c2

3

ſ	bonds	Ì

[bon	nds]		
;		ai	aj funct
			c3
1	2	1	
1	11	1	
1	7	1	
2	3	1	
2	20	1	
3	4	1	
3	22	1	
4	5	1	
4	6	1	
4	23	1	
5	17	1	
6	8	1	
6	7	1	
6	24	1	
7	21	1	
8	9	1	
9	10	1	
9	14	1	
10	18	1	
10	19	1	
11	12	1	
11	13	1	
14	15	1	
14	16	1	
[pair	rs]		

;		ai	aj funct		c0		c1		c2
1	24	1	0						
1	4	1							
1	22	1							
1	8	1							
2	5	1							
2	6 12	1							
2	12	1							
2	21	1							
2	23	1							
3	17	1							
3	11	1							
3	24	1							
3	7	1							
 ∕	o Q	1 1							
4	20	1							
4	21	1							
5	24	1							
5	22	1							
5	7	1							
5	8	1							
6	10	1 1							
6	14	1							
6	17	1							
6	22	1							
7	9	1							
7	12	1							
7	13	1							
7	20	1							
8	23 15	1							
8	16	1							
8	18	1							
8	19	1							
8	21	1							
8	23	1							
9 10	24 1E	1							
10	16	1							
11	20	1							
11	21	1							
14	18	1							
14	19	1							
17	23	1							
20	22	1							
21	24	1							
23	24	1							
[ang	les]								
;		ai	aj	ak funct		c0		c1	c2
h	1 -	11	E	C3					
2	1 1	11 7	5						
∠ 11	1	, 7	5						
1	2	3	5						
1	2 2	20	5						
3	2 2	20	5						
2	3	4	5						
2	3 2	22	5						

17	5	4	
8	6	4	
8	6	7	
8	6	24	
4	6	7	
4	6	24	
7	6	24	
1	7	21	
1	7	6	
21	7	6	
9	8	6	
10	9	14	
10	9	8	
14	9	8	
9	10	18	
9	10	19	
18	10	19	
1	11	12	
1	11	13	
12	11	13	
9	14	15	
9	14	16	
15	14	16	

[dihedrals]

;		ai			aj	ak	al funct
			C	:2			c3
	11	1	2	3	9		
	11	1	2	20	9		
	7	1	2	3	9		
	7	1	2	20	9		
	2	1	11	12	9		
	2	1	11	13	9		
	7	1	11	12	9		
	7	1	11	13	9		
	2	1	7	21	9		
	2	1	7	6	9		
	11	1	7	21	9		
	11	1	7	6	9		
	1	2	3	4	9		
	1	2	3	22	9		
	20	2	3	4	9		
	20	2	3	22	9		
	2	3	4	5	9		
	2	3	4	6	9		
	2	3	4	23	9		
	22	3	4	5	9		
	22	3	4	6	9		
	22	3	4	23	9		
	3	4	5	17	9		
	6	4	5	17	9		
	23	4	5	17	9		
	3	4	6	8	9		
	3	4	6	7	9		
	3	4	6	24	9		
	5	4	6	8	9		
	5	4	6	7	9		
	5	4	6	24	9		
	23	4	6	8	9		
	23	4	6	7	9		
	23	4	6	24	9		
	4	6	8	9	9		
	7	6	8	9	9		
	24	6	8	9	9		
	8	6	7	1	9		
	8	6	7	21	9		
	4	6	7	1	9		
	4	6	, 7	21	9		
	24	6	7	1	9		
	24	6	7	21	9		
	6	8	9	10	9		
	-	-	-				

c0 c4 c1 c5

8	9	14	9
9	10	18	9
9	10	19	9
9	10	18	9
9	10	19	9
9	14	15	9
9	14	16	9
9	14	15	9
9	14	16	9
edra	ls]		
	ai		aj
	c	2	
10	14	8	2
13	12	1	2
16	15	9	2
	8 9 9 9 9 9 9 9 9 9 9 9 9 9 10 13 16	8 9 9 10 9 10 9 10 9 14 9 14 9 14 9 14 9 14 0 14 14 13 12 16 15	8 9 14 9 10 18 9 10 19 9 10 18 9 10 19 9 14 15 9 14 15 9 14 16 9 14 35 9 14 16 9 14 6 9 14 8 13 12 1 16 15 9

al funct c3

ak

c0

c1

<u>cho.prm</u>

[bondtypes]

;	i	j	func	bC) kb	
	CG2D1	0	CG2DC3	1	0.13400000	368192.00
	CG2D1	0	CG2O3	1	0.14925000	239341.54
	CG2DC	1	CG311	1	0.15020000	305432.00
	CG2DC	2	CG311	1	0.15020000	305432.00

[angletypes]

; i j	k fun	c theta	a0	ktheta	ub0	kub		
CG2DC3	CG2D1O	CG2O3	5	108.060000	502.0	080000	0.00000000	0.00
CG2DC3	CG2D10	OG301	5	123.500000	543.9	920000	0.00000000	0.00
CG2O3	CG2D1O	OG301	5	111.880000	574.1	28480	0.00000000	0.00
CG2DC1	CG2DC1	CG311	5	123.500000	401.6	64000	0.00000000	0.00
CG2DC2	CG2DC1	CG2O3	5	121.570000	403.0	002880	0.00000000	0.00
CG311	CG2DC1	HGA4	5 1	116.000000	334.72	0000 0	0.00000000	0.00
CG2DC2	CG2DC2	CG311	5	123.500000	401.6	64000	0.00000000	0.00
CG311	CG2DC2	HGA4	5 1	116.000000	334.72	0000 0	0.00000000	0.00
CG2D10	CG2DC3	HGA5	5	120.500000	376.5	60000	0.00000000	0.00
CG2D10	CG2O3	OG2D2	5	116.000000	334.7	720000	0.23530000	41840.00
CG2DC1	CG311	CG311	5	112.200000	267.77	6000 (0.00000000	0.00
CG2DC1	CG311	OG301	5	99.000000	167.36	0000 0	0.00000000	0.00
CG2DC1	CG311	HGA1	5 1	111.500000	376.56	0000 0	0.00000000	0.00
CG2DC2	CG311	CG311	5	112.200000	267.77	6000 (0.00000000	0.00
CG2DC2	CG311	OG311	5	110.100000	633.45	57600	0.00000000	0.00
CG2DC2	CG311	HGA1	5 1	L11.500000	376.56	0000 0	0.00000000	0.00
CG2D1O	OG301	CG311	5	109.000000	443.5	04000	0.00000000	0.00

[dihedraltypes]

; i j	k	l func	phi0	kp	hi mult		
CG2O3 C	G2D10	CG2DC3	HGA5	9	180.000000	13.439845	2
OG301 C	G2D10	CG2DC3	HGA5	9	180.000000	12.552000	2
CG2DC3	CG2D10	CG2O3	OG2D2	9	0.000000	3.884426	1
CG2DC3	CG2D10	CG2O3	OG2D2	9	180.000000	9.211494	2
CG2DC3	CG2D10	CG2O3	OG2D2	9	180.000000	0.108784	3
CG2DC3	CG2D10	CG2O3	OG2D2	9	0.000000	1.703306	4
OG301 C	G2D10	CG2O3	OG2D2	9	0.000000	14.343589	2
OG301 C	G2D10	CG2O3	OG2D2	9	0.000000	6.443360	3
OG301 C	G2D10	CG2O3	OG2D2	9	180.000000	0.196648	6
CG2DC3	CG2D10	OG301	CG311	9	180.000000	3.765600	1
CG2DC3	CG2D10	OG301	CG311	9	180.000000	12.970400	2
CG2DC3	CG2D10	OG301	CG311	9	180.000000	5.020800	3
CG2O3 C	G2D10	OG301	CG311	9	180.000000	3.347200	1
CG2O3 C	G2D10	OG301	CG311	9	180.000000	12.552000	2
CG2O3 C	G2D10	OG301	CG311	9	180.000000	4.602400	3
CG2DC2	CG2DC1	CG2DC1	CG311	9	180.000000	2.343040	1
CG2DC2	CG2DC1	CG2DC1	CG311	9	180.000000	29.288000	2
CG2O3 C	G2DC1	CG2DC1	CG311	9	180.000000	2.343040	1
CG2O3 C	G2DC1	CG2DC1	CG311	9	180.000000	29.288000	2
CG2O3 C	G2DC1	CG2DC1	HGA4	9	180.000000	4.537548	2

CG2O3 CG2DC1 CG2DC2 CG2DC2 9 180.000000 3.204944 1 CG2O3 CG2DC1 CG2DC2 CG2DC2 9 0.000000 14.230202 2 CG2O3 CG2DC1 CG2DC2 CG2DC2 9 0.000000 4.152620 3 CG2O3 CG2DC1 CG2DC2 HGA4 9 180.000000 4.248434 2 CG2DC2 CG2DC1 CG2O3 OG2D2 9 180.000000 5.439200 2 CG2DC1 CG2DC1 CG311 CG311 9 0.000000 2.092000 2 CG2DC1 CG2DC1 CG311 CG311 9 0.000000 1.255200 3 CG2DC1 CG2DC1 CG311 OG301 9 0.000000 2.928800 3 CG2DC1 CG2DC1 CG311 HGA1 9 0.000000 0.125520 3 HGA4 CG2DC1 CG311 CG311 9 0.000000 0.836800 3
 HGA4
 CG2DC1
 CG311
 OG301
 9
 0.000000
 0.836800
 3

 HGA4
 CG2DC1
 CG311
 HGA1
 9
 0.000000
 0.836800
 3
 CG2DC1 CG2DC2 CG2DC2 CG311 9 180.000000 2.343040 1 CG2DC1 CG2DC2 CG2DC2 CG311 9 180.000000 29.288000 2 CG311 CG2DC2 CG2DC2 HGA4 9 180.000000 21.756800 2 CG2DC2 CG2DC2 CG311 CG311 9 0.000000 2.092000 2 CG2DC2 CG2DC2 CG311 CG311 9 0.000000 1.255200 3 CG2DC2 CG2DC2 CG311 OG311 9 180.000000 7.949600 1 CG2DC2 CG2DC2 CG311 OG311 9 180.000000 1.673600 2 CG2DC2 CG2DC2 CG311 OG311 9 180.000000 2.510400 3 CG2DC2 CG2DC2 CG311 HGA1 9 0.000000 0.125520 3 HGA4 CG2DC2 CG311 CG311 9 0.000000 0.836800 3 HGA4 CG2DC2 CG311 OG311 9 0.000000 0.836800 3 HGA4 CG2DC2 CG311 HGA1 9 0.000000 0.836800 3 CG2DC1 CG311 CG311 CG2DC2 9 180.000000 3.765600 1 CG2DC1 CG311 CG311 CG2DC2 9 180.000000 1.255200 3 CG2DC1 CG311 CG311 OG311 9 0.000000 0.836800 3 CG2DC1 CG311 CG311 HGA1 9 0.000000 0.815880 3 CG2DC2 CG311 CG311 OG301 9 0.000000 0.836800 3
 CG2DC2
 CG311
 CG311
 HGA1
 9
 0.000000
 0.815880
 3

 OG301
 CG311
 CG311
 OG311
 9
 0.000000
 0.836800
 3
 CG2DC1 CG311 OG301 CG2D10 9 180.000000 3.807440 1 CG2DC1 CG311 OG301 CG2D10 9 0.000000 2.092000 2
 CG311
 CG311
 OG301
 CG2D10
 9
 0.000000
 1.004160
 1

 CG311
 CG311
 OG301
 CG2D10
 9
 0.000000
 1.213360
 2
 CG311 CG311 OG301 CG2D10 9 0.000000 0.083680 3 HGA1 CG311 OG301 CG2D1O 9 0.000000 0.271960 3 CG2DC2 CG311 OG311 HGP1 9 0.000000 5.439200 1 CG2DC2 CG311 OG311 HGP1 9 0.000000 2.928800 2 CG2DC2 CG311 OG311 HGP1 9 0.000000 0.585760 3

[dihedraltypes]

,	imprope	r uneura	15					
;	i j	k	l func	phi0	kpł	ni		
	CG2D1O	CG2DC3	CG2O3	OG301	2	0.000000	251.040000	
	CG2O3	OG2D2	OG2D2	CG2D1O	2	0.000000	803.328000	

Optimisation Convergence Criteria

Growth Phase

Change in energy:	0.000400 (Ha)
Maximum change of X:	0.014000 (bohr)
RMS change of X:	0.008000 (bohr)
Maximum gradient element:	0.010000 (Ha/bohr)
RMS gradient element:	0.004000 (Ha/bohr)

Optimisation Phase & Normal Criteria

Change in energy:	0.000100 (Ha)
Maximum change of X:	0.007000 (bohr)
RMS change of X:	0.004000 (bohr)
Maximum gradient element:	0.005000 (Ha/bohr)
RMS gradient element:	0.002000 (Ha/bohr)

References

- 1 P. D. Lyne, A. J. Mulholland and W. G. Richards, J. Am. Chem. Soc., 1995, 117, 11345–11350.
- 2 M. M. Davidson, I. R. Gould and I. H. Hillier, J. Chem. Soc. Perkin Trans. 2, 1996, 525–532.
- 3 R. J. Hall, S. A. Hindle, N. A. Burton and I. H. Hillier, J. Comput. Chem., 2000, **21**, 1433–1441.
- 4 S. Martí, J. Andrés, V. Moliner, E. Silla, I. Tuñón, J. Bertrán and M. J. Field, J. Am. Chem. Soc., 2001, 123, 1709–1712.
- 5 Y. S. Lee, S. E. Worthington, M. Krauss and B. R. Brooks, J. Phys. Chem. B, 2002, 106, 12059–12065.
- 6 K. E. Ranaghan, L. Ridder, B. Szefczyk, W. A. Sokalski, J. C. Hermann and A. J. Mulholland, *Mol. Phys.*, 2003, **101**, 2695–2714.
- 7 K. E. Ranaghan, L. Ridder, B. Szefczyk, W. A. Sokalski, J. C. Hermann and A. J. Mulholland, Org. Biomol. Chem., 2004, 2, 968.
- 8 F. Claeyssens, K. E. Ranaghan, F. R. Manby, J. N. Harvey and A. J. Mulholland, Chem. Commun., 2005, 5068.
- 9 F. Claeyssens, J. N. Harvey, F. R. Manby, R. A. Mata, A. J. Mulholland, K. E. Ranaghan, M. Schütz, S. Thiel, W. Thiel and H.-J. Werner, *Angew. Chem. Int. Ed.*, 2006, **45**, 6856–6859.
- 10 F. Claeyssens, K. E. Ranaghan, N. Lawan, S. J. Macrae, F. R. Manby, J. N. Harvey and A. J. Mulholland, *Org. Biomol. Chem.*, 2011, **9**, 1578.
- 11 X. Pan, R. Van, E. Epifanovsky, J. Liu, J. Pu, K. Nam and Y. Shao, J. Phys. Chem. B, 2022, 126, 4226–4235.
- 12 S. A. Siddiqui and K. D. Dubey, *Phys. Chem. Chem. Phys.*, 2022, **24**, 1974–1981.
- 13 P. Kast, M. Asif-Ullah and D. Hilvert, *Tetrahedron Lett.*, 1996, **37**, 2691–2694.
- 14 S. Hur and T. C. Bruice, J. Am. Chem. Soc., 2003, 125, 10540–10542.