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S1 Data Quality 

Impact of truncation and sampling noise on noiseless dipolar traces 

The focus of this paper is the impact of random noise. However, using data with a large time 

step, or coarse sampling, degrades the distance spectrum recovered by any approach; this has been 

called sampling noise.1 Likewise, an experimental trace with a short length Tmax limits the largest 

distance that can be recovered without degradation by truncation noise.1,2 On the other hand, 

measurements with excessively short time steps or long experimental traces may not make efficient uses 

of limited spectrometer or cryogen resources. We verified that the dipolar trace length and sampling step 

used in this study do not significantly distort the distance spectrum. DL, the model-free approach with 

Tikhonov-based regularization, was used to recover distance spectra for dipolar traces with no random 

noise at different δr0/r0 values. DL accurately recovers the distance spectrum from the noiseless dipolar 

trace when δr0/r0 < 0.15 Fig. S1 and reasonably well even for δr0/r0 = 0.2.  

Neither decreasing the sampling step, nor increasing the length of the dipolar trace noticeably 

improves the Mi parameters of the f(r) at δr0/r0 = 0.15 and 0.2. The Mi parameters characterize the 

ground truth unimodal Gaussian distance distribution in terms of peak distance, peak width, and 

skewness as explained in the Experimental section of the paper. The DL approach recovers the distance 

spectrum with slightly less accuracy as δr0/r0 increases but there is virtually no sampling or truncation 

noise for the datasets used in this study. In other words, although DL shows slight biases at larger δr0/r0, 

they are not caused by sampling or truncation noise. The length and step size of the experimental trace 

has sufficient information for accurate recovery of the distance spectrum. 
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Figure S1. Impact of truncation and sampling noises on recovery of the distance spectrum from noiseless dipolar 

traces by the DL approach. Decreasing the time step or increasing the spectrum width has negligible impact on the 

recovered distance spectrum. The relative errors for M1 (A), M2 (B), and M3 (C). The color code in panels B and C 

is the same as in panel A.  
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The second norm and overlap between the distance spectra and ground truth for different datasets 

 An objective test was used to verify that the experimental trace produces an adequate distance 

spectrum. The second norm Δ2 and the overlap between the ground truth and the DL distance spectrum 

were calculated and compared for all datasets,3 Fig. S2. The second norm (Euclidean norm) is the square 

root of the sum of squares of the residuals, which decreases with increasing SNR for all datasets, 

Fig.S2 A. The overlap is the sum of the minimum of the two normalized functions, which increases with 

increasing SNR, Fig. S2 B. Every dataset gives a consistent cluster, with a few scattered outliers.  

The mean second norm does not exceed 0.02 for all datasets when SNR > 17, and the mean 

overlap > 0.9 for all tested datasets. Therefore, we conclude that the distance spectra evaluated by the 

DL approach are accurate and satisfy the conditions proposed by Schiemann et al. 3. The traces in each 

dataset contain sufficient information for recovery of its distance spectrum. 

 Figure S2. The second norm Δ2 (A) and the overlap (B) between the ground truth (P(r)) and the distance 

spectrum (f(r)) for different datasets at different noise amplitude (bottom axis) or SNR (top axis), evaluated by the 

DL method. 
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S2 Characterization of DL distance spectra 

The distance spectra were characterized for each dataset. Statistical properties were used that do not 

require, a priori, the ground truth, but do assume a unimodal Gaussian distribution for the DDF and are 

readily calculated for all experimental results. The characterization has two steps: 

A. The first and second moments, μ1i and μ2i of the distribution were calculated within the open 

window for each fi(r). Each spectrum was ‘renormalized’ to give an r-distance spectrum, i.e., 

divided by the integral of the DDF over that spectrum’s range from μ1i – nμ2i
1/2 to μ1i + nμ2i

1/2, 

where n = 2 or 3, or the full open window width was used. The μ1i, μ2i and μ3i were recalculated 

for each r-distance spectrum over that spectrum’s range. 

The relative error of M1 = μ1, M2 = μ2
1/2, and the skewness M3i = μ3i/μ2i

3/2 were calculated within 

each spectrum’s range. The range of μ1i ± nμ2i
1/2 with n = 2 was found to provide better recovery 

of all parameters across all datasets, Fig. S3. 
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Figure S3. The relative error of M1, M2, and the skewness M3 within different intervals around the peak, μ1i ± 

nμ2i
1/2 with n = 2 or 3 and for the full open window, at different δr0/r0 and SNR values. 
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Each ‘renormalized’ DL distance spectrum was also fitted by a symmetric unimodal Gaussian 

line and its M1, M2 and M3 were calculated within the μ1i ± 2μ2i
1/2 interval, Fig. S4. This Gaussian post-

processing fitting slightly improves the estimation of M1 by less than 1% but provides mixed results with 

M2. Therefore, the recovered distance spectra were characterized by M1, M2, and M3 with n = 2. 
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Figure S4. The relative error of M1, M2, and the skewness M3 of the r-distance spectrum compared with that of a 

Gaussian fit of the f(r) at different δr0/r0 and SNR values.  
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S3 Characterization of MeTA distance spectra 

One feature of MeTA is its additivity in transforming the signal and noise from the time-domain into 

the distance domain.4 This additivity can reveal how noise at different times in the experimental trace 

propagates into the distance spectrum. The noise at early times produces strong oscillations in the 

distance spectrum at short distances, Fig. S5, and decreases at larger r, as discussed previously.1 The 

parameter Nτ in the Mellin transform restricts noise propagation into the distance domain (with other 

parameters of the Mellin transform fixed) and serves as a regularization parameter. The Nτ was 

optimized for noiseless traces in each dataset by the “L-curve”, using the mse in the time domain 

between the noiseless dipolar trace and the trace calculated from the recovered MeTA distance 

spectrum, Fig. S6. However, even for the optimal Nτ, the distance spectrum has strong oscillations 

around the DDF at short distances, Fig. S5, which increase linearly with the noise amplitude. The 

distance spectrum f(r) approximates the probability density, i.e., the distance distribution function DDF, 

which should be non-negative. Therefore, for data analysis of our unimodal Gaussian distribution, we 

restrict the spectral range by the following steps so that the distance spectrum is non-negative: 

A. Selection of the spectral range for data analysis. 

a. A lower boundary rcut_st is determined as the last distance from the “left” side of the peak, at 

which the distance spectrum f(r) ≥ 0. 

b. An upper boundary rcut_f is determined as the maximal r, on the “right hand” side of the peak 

at which f(r) ≥ 0. 

c. The f(r) within the rcut_st - rcut_f range is verified to be continuous. 

B. The integral of f(r) over the spectral range is ‘renormalized’ to unity (μ0i = 1, r-distance 

spectrum). 
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C. The first, the second, and the third moments (μ1i, μ2i, μ3i) of the r-distance spectrum and the 

subsequent M1 = μ1, M2 = μ2
1/2, and the skewness M3i = μ3i/μ2i

3/2. M1 and M2 were also calculated 

for a Gaussian fit to each renormalized distance spectrum. 

An example of a distance spectrum and its spectral range for data analysis is given in Fig. S5. 

Figure S5. An example of a distance spectrum at δr0 /r0 = 0.1, ϵ = 0.06 (SNR 17) with the red and yellow circles 

showing the upper and lower boundaries of the spectral range for line shape analysis. 
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Figure S6. L-curves for optimization of the regularization parameter Nτ for noiseless traces at different δr0 /r0 

values. 
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For each f(r), the M1i, M2i and M3i were calculated within its optimal window either directly as 

M1i=μ1i, M2i=μ2i
1/2, and M3i = μ3i/μ2i

3/2, or by fitting a symmetric unimodal Gaussian line to the spectrum 

and using its M1 and M2, Fig. S7. This Gaussian post-processing fitting just slightly improves the 

estimation of M1 and provides mixed results with M2. Therefore, the recovered distance spectrum was 

characterized by its M1, M2, and M3. 
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Figure S7. The relative error of M1, M2, and the skewness M3 of the r-distance spectrum compared with the M1 

and M2 of a Gaussian fit to the f(r), for different δr0/r0 and SNR values.  
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S4 Comparison of results from DL, MeTA and MB 

Box plots of M1, M2, M3 

The M1i, M2i and M3i were calculated as M1i=μ1i, M2i=μ2i
1/2, and M3i = μ3i/μ2i

3/2, for each r-

distance spectrum obtained by DL, MB, and MeTA within its optimal window, Fig. S8. The parameters 

most relevant to a unimodal Gaussian distribution are M1 and M2. All three approaches perform well for 

distributions with moderate width and great SNR. DL is rather robust and works well with poor SNR, 

while MeTA tends to have lower bias but its uncertainty increases quickly as SNR worsens. 
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Figure S8. The relative error of M1, M2, and the skewness M3 obtained by DL, MB, and MeTA at different δr0/r0 

and SNR values.  
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The mean skewness for DL and MeTA 

The mean skewness M3 in the datasets treated by DL or MeTA is presented as a heatmap, 

Figure S9. Positive skewness means that the distance spectrum is more intense at, or skewed toward, 

longer distances than shorter distances. DL has a definite tendency to overestimate the intensity of the 

distance spectrum at large distances for broad distributions. MeTA also has significant tendencies to 

overestimate distance spectra at larger distances at low SNR, and to overestimate distance spectra at 

short distances for broad distributions at great SNR. This latter effect is somewhat puzzling because one 

reasonably expects more accurate results when the SNR is large. But this trend may be an unintended 

artifact caused by the way the distance spectra were truncated for calculation of the moments, 

particularly the skewness.  

 Calculation of the moments stops when the distance spectra become negative due to noise. So 

with the broad spectra, the tails of the peak extend to very short and to very long distances until finally 

the random noise makes them go negative and the moment calculation is halted. One would expect this 

to happen at the about the same distance from the peak center, with no effect on skewness. However, 

Figs. 1B and S5 show some sampling noise at the shortest distances with MeTA. Positive intensity in 

that sampling noise will be included in the skewness calculation for the broadest distributions with the 

best SNR, producing the negative skewness. Higher levels of random noise make the distance spectrum 

become negative closer to the peak, preventing most of the sampling noise from contributing to the 

excessive skewness. Since this occurs mainly in the extreme corner of our grid and because skewness is 

not a very useful property, there seems no need to eliminate this inconsequential artifact. 

 

 

 



17 

A  

  

B 

 

  

 M3 

 

Figure S9. The mean skewness (M3) for datasets evaluated by DL (A) and MeTA (B).  
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S5 Correlated Errors and Confidence Estimates 

Confidence ellipses and scatter plots 

Scatter plots of the relative errors in M1/r0 – 1 and M2/δr0 – 1 with 95% confidence ellipses were 

prepared for each dataset. The plots show that for moderate to broad distributions, the relative errors in 

M1 and M2 are negatively correlated, i.e., tending to overestimate one while underestimating the other. 

Such a correlation of errors is readily overlooked in the boxplots in sections S2 and S5. 

These plots also reveal that some ellipses do not cover the ground truth lying at the intersection 

of the plot axes, meaning that the bias is large relative to the uncertainty. Fortunately, the bias often 

would be insignificant in the context of the nanostructures being measured. All approaches show 

noticeable biases for broad distributions (δr0/r0≥0.1), but physically insignificant biases for narrower 

distributions and SNR >25. 
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Figure S10. A scatter plot of the relative errors in the M1 and M2 values, evaluated by DL (left panels), MB 

(central panels), and MeTA (right panels) at SNR = 167, 53, 25, and 17 (from top to bottom). The red ellipses 

show the footprint with the CI=95%. The colored background and dashed lines show the noiseless error-surface. 

The width of the distance distribution is δr0/r0 = 0.03. 
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Figure S11. A scatter plot of the relative errors in the M1 and M2 values, evaluated by DL (left panels), MB 

(central panels), and MeTA (right panels) at SNR = 167, 53, 25, and 17 (from top to bottom). The red ellipses 

show the footprint with the CI=95%. The colored background and dashed lines show the noiseless error-surface. 

The width of the distance distribution is δr0/r0 = 0.05. 
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Figure S12. A scatter plot of the relative errors in the M1 and M2 values, evaluated by DL (left panels), MB 

(central panels), and MeTA (right panels) at SNR = 167, 53, 25, and 17 (from top to bottom). The red ellipses 

show the footprint with the CI=95%. The colored background and dashed lines show the noiseless error-surface. 

The width of the distance distribution is δr0/r0 = 0.1. 
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Figure S13. A scatter plot of the relative errors in the M1 and M2 values, evaluated by DL (left panels), MB 

(central panels), and MeTA (right panels) at SNR = 167, 53, 25, and 17 (from top to bottom). The red ellipses 

show the footprint with the CI=95%. The colored background and dashed lines show the noiseless error-surface. 

The width of the distance distribution is δr0/r0 = 0.15. 
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 Figure S14. A scatter plot of the relative errors in the M1 and M2 values, evaluated by DL (left panels), MB 

(central panels), and MeTA (right panels) at SNR = 167, 53, 25, and 17 (from top to bottom). The red ellipses 

show the footprint with the CI=95%. The colored background and dashed lines show the noiseless error-surface. 

The width of the distance distribution is δr0/r0 = 0.2. 
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Table S1. Parameters of the confidence ellipses of all datasets for DL, MB, and MeTA. The ellipse parameters 

characterize the scattered M1 and M2 data as follows: the ellipse center is the static bias for M1 and M2; the 

variations are projections of ellipse semiaxis length for the CI=95%. The values for the moments are the relative 

differences M1/r0 – 1 and M2/δr0 – 1. 

DL  SNR 

δr0/r0  167 53 25 17 

 

0.03 

(M1 bias, M2 bias)∙100% (-0.09, -0.34) (-0.27, 0.52) (-0.66, 4.44) (-0.68, 9.52) 

(M1 variation, M2 variation)∙100% (0.29, 4.46) (0.84, 7.02) (1.79, 14.67) (2.47, 22.33) 

 

0.05 

(M1 bias, M2 bias)∙100% (-0.06, -0.56) (-0.22, 0.94) (-0.36, 5.76) (-0.75, 11.36) 

(M1 variation, M2 variation)∙100% (0.26, 3.46) (0.93, 9.36) (1.78, 14.43) (2.72, 27.04) 

 

0.1 

(M1 bias, M2 bias)∙100% (-0.06, 0.14) (-0.19, 2.04) (-0.41, 7.01) (-0.56, 11.56) 

(M1 variation, M2 variation)∙100% (0.34, 4.31) (0.96, 8.25) (1.88, 17.07) (2.54, 25.11) 

 

0.15 

(M1 bias, M2 bias)∙100% (-0.16, -2.02) (-0.33, -0.98) (-0.47, 1.22) (-0.81, 4.31) 

(M1 variation, M2 variation)∙100% (0.42, 3.12) (1.11, 8.07) (1.98, 15.38) (2.74, 19.82) 

 

0.2 

(M1 bias, M2 bias)∙100% (-0.76, -8.48) (-0.91, -8.61) (-1.14, -7.44) (-1.54, -6.1) 

(M1 variation, M2 variation)∙100% (0.44, 2.3) (1.15, 5.26) (2.6, 10.36) (3.21, 12.68) 

 

MB  SNR 

δr0/r0  167 53 25 17 

 

0.03 

(M1 bias, M2 bias)∙100% (-0.16, 0.09) (-0.15, 0.21) (-0.14, -0.17) (-0.16, 1.26) 

(M1 variation, M2 variation)∙100% (0.07, 2.39) (0.19, 6.32) (0.38, 12.46) (0.60, 21.21) 

 

0.05 

(M1 bias, M2 bias)∙100% (-0.17, 0.06) (-0.15, 0.30) (-0.14, 1.41) (-0.13, 1.54) 

(M1 variation, M2 variation)∙100% (0.09, 2.01) (0.31, 7.24) (0.61, 14.10) (1.00, 24.28) 

 

0.1 

(M1 bias, M2 bias)∙100% (-0.18, 0.01) (-0.16, 0.13) (-0.22, 1.11) (-0.26, 1.95) 

(M1 variation, M2 variation)∙100% (0.15, 2.07) (0.46, 5.64) (1.04, 13.57) (1.53, 20.00) 

 

0.15 

(M1 bias, M2 bias)∙100% (-0.26, -1.00) (-0.30, -1.14) (-0.29, -0.71) (-0.28, -0.40) 

(M1 variation, M2 variation)∙100% (0.20, 1.57) (0.64, 4.55) (1.19, 11.40) (1.99, 17.83) 

 

0.2 

(M1 bias, M2 bias)∙100% (-0.49, -5.36) (-0.50, -5.73) (-0.60, -4.73) (-0.48, -5.19) 

(M1 variation, M2 variation)∙100% (0.24, 1.50) (0.75, 4.27) (1.60, 9.50) (2.33, 14.10) 

 

MeTA  SNR 

δr0/r0  167 53 25 17 

 

0.03 

(M1 bias, M2 bias)∙100% (-0.02, 2.71) (-0.07, 6.58) (-0.08, 9.75) (-0.02, 10.37) 

(M1 variation, M2 variation)∙100% (0.17, 9.75) (0.5, 31.88) (0.89, 46.32) (0.92, 53.02) 

 

0.05 

(M1 bias, M2 bias)∙100% (-0.01, 3.81) (-0.05, 7.09) (-0.02, 11.86) (-0.11, 11.26) 

(M1 variation, M2 variation)∙100% (0.26, 9.05) (0.65, 22.43) (1.43, 34.71) (2.0, 51.24) 

 

0.1 

(M1 bias, M2 bias)∙100% (0, 0.26) (-0.05, 2.37) (-0.02, 3.63) (0.13, 2.31) 

(M1 variation, M2 variation)∙100% (0.43, 6.28) (1.35, 16.56) (2.37, 28.49) (3.55, 32.32) 

 

0.15 

(M1 bias, M2 bias)∙100% (-0.24, -1.83) (-0.40, -1.18) (-0.56, -1.42) (-0.62, -1.81) 

(M1 variation, M2 variation)∙100% (0.88, 7.89) (2.24, 15.29) (3.43, 24.47) (5.39, 32.12) 

 

0.2 

(M1 bias, M2 bias)∙100% (-1.5, -5.89) (-1.3, -7.37) (-0.75, -10.5) (-0.68, -13.08) 

(M1 variation, M2 variation)∙100% (0.91, 4.74) (2.5, 12.01) (5.57, 24.12) (6.4, 26.21) 
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M1 and M2 moment correlations 

The M1 and M2 and their relative errors are correlated as shown by the tilt of the ellipses noted in 

the previous section. This correlation is quantified by the ellipse tilt angle, Fig. S15, and by their 

Pearson correlation coefficients, Fig. S16. The positive counterclockwise angle tilt with respect to the Y-

axis shows a negative correlation in M1 and M2, i.e., when M1 is underestimated, M2 tends to be 

overestimated. The correlation is small for narrow distributions but is quite noticeable with broad 

distance distributions.  

Figure S15. The dependence of the counterclockwise ellipse tilt from the Y-axis (α angle) at different SNR values 

and different δr0/r0 = 0.03, 0.05, 0.1, 0.15, and 0.2. The color code is the same in all panels. 
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The Pearson correlation coefficient 𝜌𝑀1,𝑀2
 reflects the linear correlation in the datasets. A 

negative weak correlation 𝜌𝑀1,𝑀2
< -0.3 is seen for narrow distance distribution functions (δr0/r0=0.03, 

0.05), which grows increasingly negative as the DDF broadens, Fig. S16. The Pearson correlation 

coefficient correlates with the ellipses tilt value, Fig. S15. 

A  B 

C  
        

         𝜌𝑀1,𝑀2
 

Figure S16. The Pearson correlation coefficient (𝜌𝑀1,𝑀2
)for M1 and M2 evaluated by DL (A), MB (B), and MeTA 

(C). The color code for all panels is shown in the color bar. 
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S6 Migration of the χ2-surface 

The χ2-surface is the mean square difference between the dipolar traces for the ground truth at r0, 

δr0 and for other r, δr values on the grid with some level of random noise 2: 

 𝜒2(𝑟, 𝛿𝑟, 𝜖) =  
∑ (𝑉𝑖

𝑛(𝑟0, 𝛿𝑟0, 𝑡𝑖) + 𝜖(𝑡𝑖) − 𝑉𝑖
𝑓𝑖𝑡(𝑟, 𝛿𝑟, 𝑡𝑖))

2
𝑁
𝑖

∑ 𝜖(𝑡𝑖)2𝑁
𝑖

, 

where N is the total number of experimental points, 𝑉𝑖
𝑛(𝑟0, 𝛿𝑟0, 𝑡𝑖) is the dipolar trace for the ground 

truth r0 and δr0, 𝜖(𝑡𝑖) is the noise signal which is the same at each position, and 𝑉𝑖
𝑓𝑖𝑡(𝑟, 𝛿𝑟, 𝑡𝑖) is the 

dipolar trace for r and δr. Isolines on the χ2-surface determine contours, at which the χ2 is constant.  

For convenience, we plot the square root of the χ2-surface, multiplied by the noise amplitude, 

which we call the error-surface. Such a plot makes it more convenient to compare the evolving error-

surface as the noise amplitude changes using contours from different surfaces. 

The “noiseless” error surface was evaluated with no noise, i.e., 𝜖(𝑡𝑖) = 0, Fig. S17, and the 

remaining surfaces were averaged over 10 independent noise realizations with noise levels 

corresponding to SNR = 10 - 167 (Fig. S17). For the noiseless surface, the global minimum coincides 

with the ground truth, i.e., zero bias for both M1 and M2. Addition of noise raises the surface above the 

r0-dr0 plane, makes the bottom of the surface blunter, and moves its minimum along an axis connecting 

the II-IV quadrants, producing a bias for underestimation of M1 and overestimation of M2.  
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Figure S17. The error-surface at δr0/r0 = 0.1 for the noise-less dipolar trace and averages of 10 random traces 

with SNR = 167, 53, 25, 17, and 10. Isolines show contours of constant rmsd values. 
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S7 Bias of the “parent” traces and “ascending” datasets  

The M1 and M2 biases, seen for ‘ascending’ datasets from traces #17 and #70, Table S2. The 

biases for the ‘ascending’ datasets are close to the values of the errors for their ‘parent’ trace for both 

DL and MB methods. The ill-posed nature of recovering the distance spectrum is seen in this Table and 

Figs. 6-7. Traces #17 and #70 have the same ground truth and SNR. Their M1 and M2 errors with MB 

are similar, but with DL rather different. MB and DL give quite different values for the same trace. Each 

result lies well inside the footprint for the parent dataset of traces #17 and #70. The similarity of the MB 

values is a random consequence of the ill-posed nature of the problem and not an indication of the 

quality of the MB approach.  

 

Table S2. The errors and static bias of M1 and M2 for the distance spectra recovered by DL and MB approaches 

for trace #17 and #70 and their “ascending” datasets. 

  
 

DL 

 

MB 

  
 

M1 bias, % 

 

M2 bias, % 

 

M1 bias, % 

 

M2 bias, % 

 

 

#17 

  

SNR = 25 (“parent” trace) 

 

-1.07 

 

17 

 

-0.20 

 

5.10 

 

SNR = 20 (“ascending” dataset) 

 

-1.42 

 

21.6 

 

-0.31 

 

5.90 

 

 

#70 

 

SNR = 25 (“parent” trace) 

 

0.14 

 

2.92 

 

-0.42 

 

1.47 

 

SNR = 20 (“ascending” dataset) 

 

0.02 

 

2.93 

 

-0.47 

 

0.77 
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S8 Trends in the confidence bands  

The reliability of confidence bands estimated by the bootstrap function of DL was characterized 

by the fraction of CI=95 bands that fully contain the ground truth within the (r0-2δr0, r0+2δr0) interval. 

For ‘narrow’ DDFs with δr0/r0 < 0.1 the fraction of CI bands that fully include the ground truth is worse 

than for DDFs with δr0/r0 ≥ 0.1 (Table 1). The typical CI bands from a ‘narrow’ (δr0/r0 = 0.05, trace #43 

as an example) versus a ‘wide’ (δr0/r0 = 0.15, trace #29 as an example) DDF at the same SNR shows 

some noticeable differences. The ‘narrow’ distance spectrum has a narrow, thin band whose peak just 

misses the ground truth, Fig. S18 A. In contrast, the ‘wide’ distance spectrum has a wider, thicker band 

which fully includes the ground truth, Fig. S18 B, even though the peaks are somewhat shifted. This 

example demonstrates how, despite the insignificant bias of trace #43 (-0.0017, 0.0111), the CI band can 

exclude the part of ground truth, yet for trace #29 with larger biases of (-0.0111, 0.0810), the CI band 

can fully contain the ground truth.  

 Figure S18. An example of ‘narrow’ (δr0/r0 = 0.05, A) and ‘wide’ (δr0/r0 = 0.15, B) distance spectra (solid 

curves) and their CI=95 band (grey bands) at SNR = 25. The ground truths are shown by dotted curves, vertical 

dashed lines show (r0-2δr0, r0+2δr0) range. 
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We also examined the mean width or thickness of the CI bands for each dataset as measured as 

an averaged difference in upper and lower boundaries of the CI=95 band, Fig. S19. For ‘narrow’ DDFs 

the CI band width is about 1.5-3 times narrower than the band width of the ‘wide’ DDFs. 

 

Figure S19. The mean width or thickness of the confidence band (nm-1) for each dataset as measured as an 

averaged difference in upper and lower boundaries of the CI=95 band. 
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