Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information for

Z-scheme Al₂SeTe/GaSe and Al₂SeTe/InS van der Waals heterostructures for photocatalytic water splitting

Shaoying Guo^{1,2,*†}, Zhou Cui^{3†}, Yanhui, Zou¹ and Baisheng Sa^{3,**}

¹School of Pharmacy, Fujian Health College, Fuzhou, Fujian 350101, P. R. China
²Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350003, P. R. China
³Multiscale Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.

Corresponding Authors: gshy1511@126.com (S. Guo); bssa@fzu.edu.cn (B. Sa).

[†]These authors contributed equally to this work.

Table ST The binding chergies (E _b) of the heterostructures between unrefert stacking configurations						
Stacking	0°	60°	120°	180°	240°	300°
configurations	(meV/Å^2)	$(meV/Å^2)$	$(meV/Å^2)$	$(meV/Å^2)$	$(meV/Å^2)$	$(meV/Å^2)$
Al ₂ SeTe/GaSe	-11.74	-16.74	-16.57	-16.65	-16.51	-11.77
Al ₂ TeSe/GaSe	-10.73	-15.76	-15.65	-15.57	-15.71	-10.77
Al ₂ SeTe/InS	-11.40	-16.57	-16.69	-16.60	-16.15	-11.44
Al ₂ TeSe/InS	-10.33	-15.61	-15.80	-15.62	-15.59	-10.36

Table S1 The binding energies (E_b) of the heterostructures between different stacking configurations

	U (1)			U	U
Stacking configurations	0° (eV)	60° (eV)	120° (eV)	180° (eV)	240° (eV)	300° (eV)
Al ₂ SeTe/GaSe	-0.111	-0.176	-0.174	-0.175	-0.174	-0.112
Al ₂ TeSe/GaSe	-0.098	-0.164	-0.162	-0.161	-0.163	-0.099
Al ₂ SeTe/InS	-0.150	-0.219	-0.221	-0.220	-0.218	-0.150
Al ₂ TeSe/InS	-0.135	-0.206	-0.209	-0.206	-0.206	-0.136

Table S2 The formation energies (E_f) of the heterostructures between different stacking configurations.

Al ₂ Se le/lins and Al ₂ lese/lins heterostructures						
Heterostructure	Lattice constant (Å)	Layer distance (Å)	Band gap (eV)			
Al ₂ SeTe/GaSe	3.869	3.44	1.69			
Al ₂ TeSe/GaSe	3.871	3.26	1.77			
Al ₂ SeTe/InS	3.926	3.29	1.53			
Al ₂ TeSe/InS	3.927	3.11	1.66			

 Table S3 The lattice constants, layer distances and band gaps of Al₂SeTe/GaSe, Al₂TeSe/ GaSe, Al₂SeTe/InS and Al₂TeSe/InS heterostructures

Fig.S1 The phonon dispersion curves and AIMD simulations of Al_2SeTe monolayer.

Fig.S2 The planar-averaged electrostatic potential for (a) Janus Al₂SeTe, (b) GaSe and (c) InS monolayers along the z-direction.

Fig. S3 The band edge positions of the Janus Al_2SeTe , GaSe and InS monolayers.

Fig.S4 Top and side views of (a) Al₂SeTe/InS and (b) Al₂TeSe/InS heterostructures with different stacking configurations.

Fig. S5 The phonon dispersion curves of (a) Al₂SeTe/GaSe, (b) Al₂SeTe/InS, (c) Al₂SeTe/GaSe and (d) Al₂TeSe/InS heterostructures.

Fig. S6 The AIMD simulations of (a) Al₂SeTe/GaSe, (b) Al₂SeTe/InS, (c) Al₂TeSe/GaSe and (d) Al₂TeSe/InS heterostructures with 300 K.

Fig. S7 The 3D isosurface plots for the charge density difference of (a) Al₂SeTe/GaSe, (b) Al₂SeTe/InS, (c) Al₂TeSe/GaSe and (d) Al₂TeSe/InS heterostructures. The isovalue is set to 0.00005 e·Å⁻³. The blue and yellow regions represent the loss and accumulation of charges.

Fig. S8 The orthorhombic (a) lattice structure, (b) band structure of Al₂SeTe/GaSe heterostructure, (c) total energy and (d) band edge positions of Al₂SeTe/GaSe as a function of the uniaxial strain ε along both the zigzag (x) and armchair (y) directions.

Fig. S9 The orthorhombic (a) lattice structure, (b) band structure of Al₂SeTe/InS heterostructure, (c) total energy and (d) band edge positions of Al₂SeTe/InS as a function of the uniaxial strain ε along both the zigzag (x) and armchair (y) directions.

Fig. S10 The orthorhombic (a) lattice structure, (b) band structure of Al₂TeSe/GaSe heterostructure, (c) total energy and (d) band edge positions of Al₂TeSe/GaSe as a function of the uniaxial strain ε along both the zigzag (x) and armchair (y) directions.

Fig. S11 The orthorhombic (a) lattice structure, (b) band structure of Al₂TeSe/InS heterostructure, (c) total energy and (d) band edge positions of Al₂TeSe/InS as a function of the uniaxial strain ε along both the zigzag (x) and armchair (y) directions.