SUPPLEMENTARY INFORMATION

Boron-Based Ternary MgTa₂B₆ Cluster: A Turning Nanoclock with Dynamic Structural Fluxionality

Fang-Lin Liu, Jin-Chang Guo, and Hua-Jin Zhai*

Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

*E-mail: hj.zhai@sxu.edu.cn

Supplementary Information – Part I

- **Table S1**Cartesian coordinates for optimized global-minimum (GM) and transition-state
(TS) structures of MgTa2B6 cluster at the PBE0-D3BJ/def2-TZVP level.
- **Table S2**Orbital composition analysis for occupied canonical molecular orbitals (CMOs)of GM (1, C_s , $^1A'$) MgTa₂B₆ cluster. Main components are highlighted in bold.
- **Table S3**Orbital composition analysis for occupied CMOs of TS (1', C_s , $^1A'$) MgTa₂B₆cluster. Main components are highlighted in bold.
- **Table S4**Calculated NICS
_{zz} and NICS (shown in *italics* in brackets) of GM (1, C_s , $^1A'$)
MgTa2B6 cluster at the PBE0/Ta/def2-TZVP/B,Mg/6-311+G(d) level. These
values are calculated at the center of B6 ring or B4 trapezoid, as well as at 1 Å
above the center.
- **Figure S1** Optimized geometric structures for the top 20 low-lying isomers of MgTa₂B₆ cluster at the PBE0-D3BJ/def2-TZVP level along with their relative energies (in

italics), including corrections for the zero-point energies (ZPEs). Relative energies are also listed at the single-point CCSD(T)/def2-TZVP//PBE0-D3BJ/ def2-TZVP level with ZPE corrections, as well as at the single-point CCSD(T)/def2-TZVP//BP86-D3BJ/def2-TZVP level (in brackets) with ZPE corrections. All energies are shown in kcal mol⁻¹.

- Figure S2 Calculated bond distances (in Å; black color) and Wiberg bond indices (WBIs; in blue color) for GM MgTa₂B₆ cluster at the PBE0-D3BJ/def2-TZVP level. The WBI values are obtained from the natural bond orbital (NBO) analysis.
- **Figure S3** Calculated (a) bond distances (in Å; black color) and (b) WBIs (blue color) for TS MgTa₂B₆ cluster. The WBIs are obtained from the NBO analysis.
- **Figure S4** Pictures of occupied CMOs of GM (1, C_s , ¹A') MgTa₂B₆ cluster, sorted to five subsets. (a) Six CMOs for skeleton, localized B–B σ bonds along the peripheral B₆ ring. (b) Three delocalized π CMOs; that is, the π sextet. (c) Three delocalized σ CMOs. (d) Two Ta 5d-based CMOs that are approximately Ta–Ta nonbonding, with secondary d-p σ bonding. (e) One σ bond within the Ta8–Mg9 unit (see Fig. 1(a) for atom labels), as well as the lowest unoccupied molecular orbital (LUMO). Subsets (b) and (c) collectively render the MgTa₂B₆ cluster $6\pi/6\sigma$ double aromaticity.
- **Figure S5** Calculated natural atomic charges (in |e|) of a model $D_{6h} CB_6^{2-}$ cluster from the NBO analysis at the PBE0-D3BJ/def2-TZVP level.
- **Figure S6** An alternative chemical bonding scheme for $GM(1, C_s, {}^1A')MgTa_2B_6$ cluster on the basis of adaptive natural density partitioning (AdNDP) analysis. Occupation numbers (ONs) are indicated.
- Figure S7 Isosurfaces of electron localization functions (ELFs) for GM MgTa₂B₆ cluster. (a) At the B₆ plane. (b) At the plane of B3–Ta8–B6–Ta7 rhombus.
- **Figure S8** Pictures of occupied CMOs of TS (1', C_s , ¹A') structure of MgTa₂B₆ cluster. (a) Six CMOs for localized B–B σ bonds along the peripheral B₆ ring. (b) Three

delocalized π CMOs. (c) Three delocalized σ CMOs. (d) Two Ta 5d-based CMOs that are approximately Ta–Ta nonbonding. (e) One σ bond within the Ta8–Mg9 unit, as well as the LUMO.

Figure S9 AdNDP bonding scheme for the TS structure of MgTa₂B₆ cluster. The ONs are shown. This bonding scheme is to be compared to that of GM MgTa₂B₆ cluster as shown in Fig. 4.

Supplementary Information – Part II

A short movie extracted from the Born-Oppenheimer molecular dynamics (BOMD) simulation for GM MgTa₂B₆ cluster. The simulation was performed at near room temperature (300 K) for a time duration of 60 ps. The movie roughly covers a time span of 12 ps.

Table S1Cartesian coordinates for optimized global-minimum (GM) and transition-state
(TS) structures of MgTa2B6 cluster at the PBE0-D3BJ/def2-TZVP level.

1 (GM, $C_{\rm s}$, ¹A')

В	0.79142705	1.39983409	0.00265237
В	-0.82052483	1.38297912	0.00265237
В	-1.59640516	-0.01904227	0.00592409
В	-0.78469099	-1.39741379	-0.00857646
В	0.81373964	-1.38070020	-0.00857646
В	1.59645430	0.01434306	0.00592409
Ta	0.00001937	-0.00185289	-1.47094945
Ta	0.00001937	-0.00185289	1.51355369
Mg	-0.02720039	2.60135261	2.67545797

1' (TS, $C_{\rm s}$, ¹A')

В	0.01759854	1.61053394	-0.00964987
В	-1.38027195	0.81283623	0.00512060
В	-1.39059116	-0.78526101	-0.01234223
В	-0.01753949	-1.60512975	0.02409312
В	1.37309985	-0.81546027	-0.01234223
В	1.39770421	0.78248087	0.00512060
Та	0.00000293	0.00026830	1.47148794
Та	0.00000293	0.00026830	-1.51217717
Mg	0.02827561	2.58764807	-2.74741123

Table S2Orbital composition analysis for occupied canonical molecular orbitals (CMOs)of GM $(1, C_s, {}^1A')$ MgTa₂B₆ cluster. Main components are highlighted in bold.

Subsystem	СМО	B ₆ (%	b)	Ta ₂ (%)		Mg (%)	
		s/p	total	s/p/d	total	s/p	total
B–B		0.2/ 96.7	96.9	0.0/0.1/0.4	0.5	0.2/0.0	0.2
2c-2e σ							
	HOMO–7 (a')						
		23.4/54.9	78.3	0.0/0.0/19.8	19.8	0.0/0.0	0.0
	HOMO-10 (a") HOMO-11 (a')	22.7/54.9	77.6	0.1/0.2/ 20.0	20.3	0.3/0.0	0.3
	HOMO-12 (a")	36.0/27.7	63.7	0.0/4.6/25.5	30.1	0.0/0.0	0.0
	НОМО-13 (а')	36.0/27.6	63.6	0.0/4.8/25.3	30.1	0.1/0.1	0.2
	HOMO-14 (a')	48.5 /18.6	67.1	7.3/5.6/4.1	17.0	0.2/0.1	0.3
Mg–Ta 2c-2e σ	HOMO (a')	2.0/ 22.2	24.2	3.9/5.4/ 32.5	41.8	30.3 /1.9	32.2

6π		0.1/ 60.7	60.8	0.0/2.2/ 34.5	36.7	0.0/0.1	0.1
aromaticity							
		1 7/59 1	60.8	0 3/3 8/27 0	31.1	5 3/0 1	54
		1.77071	00.0	0.5/5.0/2/00	0111	0.0/0.1	5.1
	•						
	HOMO-6 (a')						
		0.6/ 67.5	68.1	12.6/2.5/6.5	21.6	3.9/0.1	4.0
	HOMO-9 (a')						
6σ		16.2/ 55.0	71.2	0.0/6.7/ 20.1	26.8	0.0/0.3	0.3
aromaticity							
	HOMO -3 (a [*])	8 2/36 0	44.2	1 0/6 1/ 28 8	35.9	17.9/0.0	17.9
		0.2/30.0	77.2	1.0/0.1/20.0	55.7	17.9/0.0	17.7
	HOMO-4 (a')						
		23.7/36.8	60.5	1.7/0.2/34.2	36.1	1.0/0.0	1.0
		2011/0010	0010	1.770.270.112	0.011	110/010	110
	HOMO-8 (a')						
Ta d-based		0.2/ 28.7	28.9	0.0/0.1/70.2	70.3	0.0/0.2	0.2
CMOS							
	HOMO-1 (a")						
		5.7/35.3	41.0	1.2/2.5/ 45.3	49.0	8.3/0.4	8.7
	HOMO $_2$ (a')						
	1101110 2 (a)			1		1	

Subsystem	СМО	B ₆ (%)	Ta ₂ (%)		Mg (%)	
		s/p	total	s/p/d	total	s/p	total
B–B		0.0/ 97.7	97.7	0.0/0.0/0.1	0.1	0.0/0.0	0.0
2c-2e σ							
	HOMO-7 (a")						
		23.2/55.2	78.4	0.0/0.0/19.7	19.7	0.0/0.0	0.0
	HOMO-10 (a")						
		23.2/54.4	77.6	0.1/0.1/20.2	20.4	0.2/0.0	0.2
	HOMO-11 (a')						
		36.0/27.7	63.7	0.0/4.6/25.5	30.1	0.0/0.0	0.0
	-						
	HOMO-12 (a")						
		36.1/27.5	63.6	0.0/4.7/ 25.4	30.1	0.1/0.1	0.2
	O						
	HOMO-13 (a')						
	2	48.5 /18.6	67.1	7.3/5.6/4.1	17.0	0.2/0.1	0.3
	(
	HOMO-14 (a')						
Mg–Ta		2.0/23.1	25.1	3.5/5.0/ 35.3	43.8	27.8 /1.6	29.4
2c-2e σ							
	HOMO (a')						

Table S3Orbital composition analysis for occupied CMOs of TS (1', C_s , $^1A'$) MgTa₂B₆cluster. Main components are highlighted in bold.

6π aromaticity		0.1/ 60.6	60.7	0.0/2.1/ 34.6	36.7	0.0/0.1	0.1
							
	HOMO-5 (a")						
	*	2.2/ 57.5	59.7	0.4/4.3/ 25.6	30.3	7.2/0.0	7.2
	HOMO-6 (a')						
	номо-9 (a')	0.5/ 67.4	67.9	12.7/2.6/6.3	21.6	4.0/0.1	4.1
6 σ aromaticity	HOMO-3 (a")	16.1/ 55.1	71.2	0.0/6.7/ 20.2	26.9	0.0/0.3	0.3
	номо-4 (a')	7.3/ 35.3	42.6	1.1/5.7/ 30.2	37.0	18.3/0.0	18.3
	номо-8 (a')	23.8/36.5	60.3	1.7/0.2/ 34.5	36.4	0.9/0.0	0.9
Ta d-based CMOs	НОМО-1 (а")	0.2/ 28.0	28.2	0.0/0.1/ 71.0	71.1	0.0/0.2	0.2
	НОМО-2 (а')	6.3/ 36.7	43.0	1.3/2.8/ 42.0	46.1	9.2/0.4	9.6

Table S4Calculated NICS
_{zz} and NICS (shown in *italics* in brackets) of GM (1, C_s , ¹A')MgTa2B6 cluster at the PBE0/Ta/def2-TZVP/B,Mg/6-311+G(d) level. These
values are calculated at the center of B6 ring or B4 trapezoid, as well as at 1 Å
above the center.

R (Å)	B ₆ ring	6 6 1 2 3 3 B ₄ trapezoid	6 5 4 3 B ₄ trapezoid	6 6 1 2 3 B ₄ trapezoid	6 5 1 4 2 3 B ₄ trapezoid
0.0	-91.43 (- <i>100.03</i>)	-77.20 (-54.11)	-74.01 (-52.78)	-67.00 (-49.28)	-64.77 (-46.68ª)
1.0	-141.14 (+57.84 ^b)	-59.94 (+5.11 ^b)	-52.62 (+7.73 ^b)	-39.08 (+10.35 ^b)	-36.18 (+9.51 ^b)

^a The dissected contributions from a subset of CMOs to the total NICS value can be evaluated using the NBO 6.0 package. As an example, we shall analyze a point located 0.5 Å below the center of B3B4B5B6 trapezoid. Here the total NICS value is highly negative (-39.62 ppm), to which the delocalized 6π and 6σ frameworks (Fig. S4(b) and S4(c)) contribute by 74.5% collectively. To be specific, the three delocalized σ CMOs have a contribution of -19.54 ppm, as compared to -10.03 ppm from three delocalized π CMOs. In other words, the delocalized σ and π CMOs account for 49.2% and 25.3% of the total NICS value, respectively. Note that these numbers are merely an example. This analysis further validates the concept of double π/σ aromaticity in the ternary cluster.

^b These NICS(1) values are not a very reliable indicator of π aromaticity, due to the perturbation of a Ta atom in the vicinity. The Ta atom is 1.49 Å above/below the B₆ plane.

Figure S1 Optimized geometric structures for the top 20 low-lying isomers of MgTa₂B₆ cluster at the PBE0-D3BJ/def2-TZVP level along with their relative energies (in italics), including corrections for the zero-point energies (ZPEs). Relative energies are also listed at the single-point CCSD(T)/def2-TZVP//PBE0-D3BJ/ def2-TZVP level with ZPE corrections, as well as at the single-point CCSD(T)/def2-TZVP//BP86-D3BJ/def2-TZVP level (in brackets) with ZPE corrections. All energies are shown in kcal mol⁻¹.

1 $C_{\rm s}$ (¹A') 0.00 (0.00) 0.00

6 C2v (3B2)

16.97

11 C₁ (¹A)

28.33 (28.58)

24.76

16 C₁ (¹A)

29.79 (30.58)

29.28

13.61 (13.66) 13.82

7 $C_{\rm s}$ (¹A') 25.64 (26.50) 21.31 (21.35) 26.17

12 C₁ (¹A) 28.38 (28.43) 25.38

17 C₁ (³A) 30.79 (31.67) 16.03

3 C_s (¹A') 14.68 (15.02) 12.20

8 Cs (1A') 26.02 (26.24) 26.99

13 C₁ (¹A) 28.74 (29.05) 25.50

18 C_s (¹A') 31.05 (31.37) 29.07

4 C_{2v} (¹A₁) 17.08 (17.44) 18.61

9 C1 (1A) 26.80 (27.03) 24.57

14 C₁ (¹A) 29.30 (29.86) 26.74

19 C₁ (¹A) 32.26 (32.53) 27.17

5 C_s (¹A') 20.30 (20.50) 16.73

10 C_s (³A') 27.97 (30.38) 18.08

15 C₁ (¹A) 29.48 (30.12) 22.43

20 C1 (1A) 32.41 (32.88) 28.24

Figure S2Calculated bond distances (in Å; black color) and Wiberg bond indices (WBIs; in
blue color) for GM MgTa2B6 cluster at the PBE0-D3BJ/def2-TZVP level. The
WBI values are obtained from the natural bond orbital (NBO) analysis.

Figure S3Calculated (a) bond distances (in Å; black color) and (b) WBIs (blue color) for TSMgTa2B6 cluster. The WBIs are obtained from the NBO analysis.

Figure S4 Pictures of occupied CMOs of GM (1, C_s , ¹A') MgTa₂B₆ cluster, sorted to five subsets. (a) Six CMOs for skeleton, localized B–B σ bonds along the peripheral B₆ ring. (b) Three delocalized π CMOs; that is, the π sextet. (c) Three delocalized σ CMOs. (d) Two Ta 5d-based CMOs that are approximately Ta–Ta nonbonding, with secondary d-p σ bonding. (e) One σ bond within the Ta8–Mg9 unit (see Fig. 1(a) for atom labels), as well as the lowest unoccupied molecular orbital (LUMO). Subsets (b) and (c) collectively render the MgTa₂B₆ cluster $6\pi/6\sigma$ double aromaticity.

 $\begin{array}{c} (a) \\ (b) \\ (b)$

Figure S5 Calculated natural atomic charges (in |e|) of a model $D_{6h} CB_6^{2-}$ cluster from the NBO analysis at the PBE0-D3BJ/def2-TZVP level.

Figure S6An alternative chemical bonding scheme for $GM(1, C_s, {}^1A') MgTa_2B_6$ cluster on
the basis of adaptive natural density partitioning (AdNDP) analysis. Occupation
numbers (ONs) are indicated.

Figure S7 Isosurfaces of electron localization functions (ELFs) for GM MgTa₂B₆ cluster. (a) At the B₆ plane. (b) At the plane of B3–Ta8–B6–Ta7 rhombus.

Pictures of occupied CMOs of TS (1', C_s , ¹A') structure of MgTa₂B₆ cluster. (a) Figure S8 Six CMOs for localized B–B σ bonds along the peripheral B₆ ring. (b) Three delocalized π CMOs. (c) Three delocalized σ CMOs. (d) Two Ta 5d-based CMOs that are approximately Ta–Ta nonbonding. (e) One σ bond within the Ta8–Mg9 unit, as well as the LUMO.

HOMO-14 (a')

HOMO-9 (a')

HOMO-8 (a')

HOMO-2 (a')

HOMO (a')

Figure S9 AdNDP bonding scheme for the TS structure of MgTa₂B₆ cluster. The ONs are shown. This bonding scheme is to be compared to that of GM MgTa₂B₆ cluster as shown in Fig. 4.

