Supplementary Data

Hydrogen Adsorption on Various Transition Metal (111) Surfaces in Water: A DFT Forecast

Basil Raju Karimadom,^a Alina Sermiagin,^a Dan Meyerstein,^{a,b} Tomer Zidki,^a Amir Mizrahi,^c Ronen Bar-Ziv ^c and Haya Kornweitz ^{a*}

Figures

Figure S1: The adsorption-free energies of hydrogen on various metal (111) surfaces.

Figure S2: The shortest distance between hydrogen atoms (Å) on the M(111) under different surface coverage.

Figure S3: The adsorption energies (E_{ads}) of hydrogens on M(111) surface

Figure S4: The charge on M(111) surface at different surface coverage of hydrogens.

Figure S5: UV-Vis spectra of 3.8nm Ag^0 -NPs (\rightarrow) Ag^0 -NPs before HER, maximum absorption 395 ± 2 nm. (\rightarrow) Ag^0 -NPs after HER, maximum absorption 394 ± 2 nm. (\rightarrow) Ag^0 -NPs after HER with methyl-viologen, [MV] = 1mM. (\rightarrow) Ag^0 -NPs after HER with methyl-viologen [MV] = 1mM in argon atmosphere, maximum absorption 637 ± 2 nm.

Tables

Table S1: Hydrogen binding energies (eV) on different adsorption sites on M(111) surface.

N A a a a	C		1*.I	
wetal	TCC	ncp	bridge	атор
Cu	3.09	3.09	2.96	2.53
Ag	3.16	3.18	3.05	2.79
Au	3.30	3.25	3.27	3.12
Ni	4.11	4.09	3.96	3.53
Pd	3.98	3.94	3.85	3.51
Pt	3.91	3.86	3.87	3.93
Со	4.12	4.12	3.99	3.60

Table S2: The binding energies of a hydrogen atom on the fcc site of M(111) surfaces

		TPD H ₂			
Metal	This research		Greeley et	Ferrin et	desorption
	In Aqueous Phase	In Gas Phase	al.[8] al.[9]	al.[9]	(K) [1–7]
Cu	3.49	2.59	2.39	2.45	200-220
Ag	2.99	3.14	2.08	2.12	180
Au	3.17	3.15	2.22	2.18	108-111
Ni	3.91	3.91	2.89	2.94	335-370
Pt	3.76	3.72	2.72	2.72	270-300
Pd	3.77	3.78	2.88	2.88	300
Со	3.93	3.93	2.89	-	-

Table S3: The ZPE (eV) values of the metal surface before and after the adsorption of hydrogen atom in aqueous and gaseous medium.

М	Surface ZPE (aq) (eV)		Surface ZPE (gas) (eV)	
	Pristine	After H adsorption	Pristine	After H adsorption
Cu	2.86	3.24	2.57	3.08
Ag	0.90	1.08	1.06	1.06
Au	0.82	0.97	0.93	0.93
Ni	1.67	1.67	1.67	1.67
Pt	1.46	1.49	1.33	1.36
Pd	1.80	1.75	1.64	1.60
Co	1.70	1.71	1.69	1.69

Table S4: The hydrogen binding energies and charge on H atoms with and without the presence of a co-adsorbed H_2O molecule.

М	H*	H [*] alone		H^* in presence of H_2O^*	
	H* B.E (eV)	Charge on H*	H* B.E (eV)	Charge on H*	
Cu	3.49	-0.29	3.46	-0.30	
Ag	2.99	-0.22	3.13	-0.22	
Au	3.17	-0.10	3.14	-0.07	
Ni	3.91	-0.33	3.90	-0.33	
Pd	3.77	-0.16	3.79	-0.15	
Pt	3.76	-0.12	3.72	-0.12	
Со	3.93	-0.39	3.93	-0.38	

Table S5: Charge on adsorbed hydrogen on a neutral and charged surface, Q is the charge of the surface.

М	Q = 0	Q = -1	Q = +1
Cu	-0.29	-0.33	-0.27
Ag	-0.22	-0.24	-0.20
Au	-0.10	-0.10	-0.07
Ni	-0.33	-0.36	-0.30
Pd	-0.16	-0.19	-0.15
Pt	-0.12	-0.14	-0.10
Co	-0.39	-0.42	-0.35

Table S6: The optimized geometries (top view^{*}) of hydrogen adsorbed on Ag(111), Au(111) and Cu(111) surface.

No. of Hydrogens	Cu(111)	Ag(111)	Au(111)
1	Y Y		
2			
8			
9			

* In the last row a side view is given for Au, to show the deformation of Au(111) in 9/8 coverage ratio.

Table S7: The optimized geometries of hydrogen adsorbed on Co(111), Ni(111), Pd(111) and Pt(111) surface.

No. of Hydrogens	Co(111)	Ni(111)	Pd(111)	Pt(111)
1	X X			
2				
8				
9				

Table S8: $\Delta G_{H_2(aq)}$ values on neutral and charged M(111) surfaces, Q is the charge of the surface.

М	No. of	$\Delta G_{H_2(aq)}$ (eV)	
141	Hydrogens	Q = 0	Q = -1
Cu	8	0.09	0.10
	9	-1.02	-1.13
Ag	9	-1.52	-1.60
Au	7	-0.58	-0.60
Ni	9	0.37	0.25
	10	-0.61	-0.78
Pd	9	0.25	0.14
	10	-0.45	-0.66

Pt	8	0.82	0.73
	9	0.00	-0.09
Со	9	0.46	0.38
	10	-0.28	-0.39

Table S9: The E_a barriers for the H_2 evolution from M(111) surfaces at 10/8 ML coverage.

M(111)	E _a (eV)		
	Q = 0	Q = -1	
Pd	0.36	0.34	
Ni	0.38	0.43	
Со	0.26	0.32	

Table S10: The E_a barriers (eV) for the H_2 dissociation and formation from M(111) surfaces at 2/8 ML coverage: $* + H_{2(aq)} \rightarrow 2*H$

М	H ₂ dissociation barriers	H ₂ formation barrier
Cu	0.29	0.94ª
Ag	1.13ª	0.79
Au	0.64ª	0.65
Ni	0.18	1.04ª
Pd	0.00	1.19ª
Pt	0.00	1.45ª
Со	0.00	1.67ª

^a These reactions are endergonic.

VASP INCAR File

Job Title

- #Start parameters
- INIWAV = 1

ISTART = 0

ICHARG = 2

#Electronic Relaxation

- ALGO = FAST
- AMIX = 0.1
- BMIX = 0.001
- ENMAX = 400
- EDIFF = 1E-04
- ISMEAR = 1
- NELM = 120
- IVDW = 1 #dispersion correction
- LSOL = .TRUE. #solvation

#Ionic Relaxation
IBRION = 2
NSW = 150
ISIF = 2

#Performance optimization
NCORE = 16
LREAL = Auto

#Phonon Calculation (changes and additions in the INCAR)
NFREE = 2
POTIM = 0.15 #Diffrent values are used (Section 2)
IBRION = 6
NSW = 1

#DOS calculation (changes and additions in the INCAR) ISMEAR = -5 IBRION = -1 ICHARG = 11 LORBIT = 11 NEDOS = 500 NSW = 0

#TS calculation (changes and additions in the INCAR)
IBRION = 3
POTIM = 0
IOPT = 3
LCLIMB = .TRUE.
IMAGES = 5
TIMESTEP = 0.01
SIGMA = 0.05
SPRING = -5
LSCALAPACK = .FALSE.

References

- S.T. Ceyer, The Unique Chemistry of Hydrogen beneath the Surface: Catalytic Hydrogenation of Hydrocarbons, Acc. Chem. Res. 34 (2001) 737–744. https://doi.org/10.1021/ar970030f.
- G. Pauer, A. Winkler, Water formation on Pd(111) by reaction of oxygen with atomic and molecular hydrogen, J. Chem. Phys. 120 (2004) 3864–3870. https://doi.org/10.1063/1.1643352.
- P.B. Lloyd, M. Swaminathan, J.W. Kress, B.J. Tatarchuk, Temperature programmed desorption study of the adsorption and absorption of hydrogen on and in Cu(111), Appl. Surf. Sci. 119 (1997) 267–274. https://doi.org/10.1016/S0169-4332(97)00178-5.
- [4] T. Kammler, J. Küppers, Interaction of H atoms with Cu(111) surfaces: Adsorption, absorption, and abstraction, J. Chem. Phys. 111 (1999) 8115–8123. https://doi.org/10.1063/1.480145.
- [5] G. Lee, P.T. Sprunger, M. Okada, D.B. Poker, D.M. Zehner, E.W. Plummer, Chemisorption of hydrogen on the Ag(111) surface, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 12 (1994) 2119–2123. https://doi.org/10.1116/1.579147.
- [6] M. Pan, D.W. Flaherty, C.B. Mullins, Low-Temperature Hydrogenation of Acetaldehyde to Ethanol on H-Precovered Au(111), J. Phys. Chem. Lett. 2 (2011) 1363–1367. https://doi.org/10.1021/jz200577n.
- [7] K. Christmann, G. Ertl, T. Pignet, Adsorption of hydrogen on a Pt(111) surface, Surf. Sci. 54 (1976) 365–392. https://doi.org/10.1016/0039-6028(76)90232-6.
- [8] J. Greeley, M. Mavrikakis, Surface and Subsurface Hydrogen: Adsorption Properties on Transition Metals and Near-Surface Alloys, J. Phys. Chem. B. 109 (2005) 3460–3471. https://doi.org/10.1021/jp046540q.
- [9] P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study, Surf. Sci. 606 (2012)

679-689. https://doi.org/10.1016/j.susc.2011.12.017.