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1. Time-of-flight profiles of atomic ions
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An analytical expression of the time-of-flight (TOF) profile  for each atomic ion with a 𝑓𝑚(𝑡)

Figure S1: Scaled TOF profiles. The solid blue line represents Ar+ from a gaseous Ar beam 
obtained at a stagnation pressure of 1 atm.  The dashed/dotted traces represent the TOF profiles of 
MCAI from the argon cluster . 𝐴𝑟8003𝐶𝑙𝐵0.07
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mass-to-charge ratio m is necessary to help disentangle the contribution of ion velocity from the 

noises and detector responses, as explained in the main text. Fig. S1 shows the scaled and 

recentered TOF profiles of multiply charged atomic ions (MCAI) from A  in 𝑟8003𝐶𝑙𝐵0.07

comparison with the profile of Ar+ obtained from argon gas. The similarity among these profiles 

near the peak position suggests that the right side (longer time) of each profile is related to the 

detector response, and the small peak is most likely due to the oscillation caused by the detector 

circuit. The rise edge on the left side (shorter time) of each MCAI is related to the limited 

transmission of high energy ions through the aperture on the extractor. The overall fitting result 

using Eq. 1 from the main text for Ar4+ is shown in Fig. S2. The misfit in the leading edge has an 

effect in the calculation of the final kinetic energy, and our calculation, with a slightly lower 

intensity than the experimental result, thus represents a conservative estimate of the average 

value. In the worst-case scenario, this under-estimate can be a factor of two lower than the value 

obtained from a fitting with a more complicated fitting function, due to the heavier weight on the 

high energy tail in the KE calculation. A minor misfit in the overlapping region between the 

Genlogistic and Gaussian function is unfortunately magnified in the subsequent data processing, 

particularly for large clusters. Consequently as explained in the main text, the resulting average 

Figure S2: Fitting result of the TOF profile of Ar4+ from  (black dots), including the 𝐴𝑟8003𝐶𝑙𝐵0.07

Gaussian (red dotted line), the Genlogistic function (blue dashed line), and the total fitting result 
(purple continuous line).   
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speed and energy have large uncertainties and the reported values should be considered as lower 

limits. Without the glitch caused by the small misfit, the final kinetic energy distribution is 

Maxwellian, as shown in Fig. 4 and 5 of the main text. 

2. Kinetic energy distributions derived from time-of-flight profiles 

2.1 From velocity distributions to time-of-flight profiles

Figure S3 shows the definition of variables based on the experimental setup for the following 

derivation. After a cluster disintegrates, MCAI are accelerated by the extraction field between the 

Kicker and the Extractor electrodes. Different from Fig. 1 in the main text, this experiment does 

not include the Retarder, and the Extractor was always grounded, hence in the current treatment, 

the Extractor and the flight tube are treated as one unit with ground potential. Moreover, the 

effective area of the MCP detector is 48 mm in diameter, the inner diameter of the flight tube is 

close to 50 mm, the diameter of the aperture on the Extractor is only 1 mm, and the flight tube is 

270 mm. Based on our calculation, if an ion can pass through the aperture, it can reach the effective 

area of the MCP and it will not collide with the inner wall of the flight tube.

The arrival times (t) of these ions at the detector is related to the projection of their velocity along 

the flight axis (x-axis),  through the following equation: 𝑣𝑥,

𝑡 = 𝑡𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛1 + 𝑡𝑓𝑖𝑒𝑙𝑑𝑓𝑟𝑒𝑒 + 𝑡𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛2

 ,
=

2𝑙0

𝑣𝑥 + 𝑣2
𝑥 + 2𝑎0𝑙0

+
𝑙1

𝑣2
𝑥 + 2𝑎0𝑙0

+
2𝑙2

𝑣2
𝑥 + 2𝑎0𝑙0 + 𝑣2

𝑥 + 2𝑎0𝑙0 + 2𝑎2𝑙2

(S1)
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where  is the acceleration between the Kicker and the Extractor electrodes,  is the distance of 𝑎0 𝑙0

travel in the acceleration region 1,  is the aperture radius on the Extractor,  is the length of the ∆ 𝑙1

flight tube,  is the distance between the flight tube and the microchannel plate detector 𝑙2

(acceleration region 2), and  is the acceleration of this region. Eq. S1 shows that the time-of-𝑎2

flight for each region is given by the length of the region divided by the average velocity between 

the initial and final velocity in the region. 

If we assume that the MCAI are produced with an isotropic angular distribution , we 𝑃𝑚(𝑣𝑥,𝑣𝑦,𝑣𝑧)

may write 

  , (S2)
𝑃𝑚(𝑣𝑥,𝑣𝑦,𝑣𝑧) =

𝐹𝑚(𝑣)

4𝜋𝑣2

where ,  is the ion distribution produced with velocity magnitude  𝑣 = 𝑣2
𝑥 + 𝑣2

𝑦 + 𝑣2
𝑧 𝐹(𝑣) 𝑣( ≥ 0)

in any direction, and the subscript m represents the mass-to-charge ratio of the MCAI. In the 

following computations, the subscript  is omitted and is only included for emphasis in certain 𝑚

equations. The TOF profile of the ions is determined by the projection of the velocity distribution 

 along the x-direction . We obtain  by integrating over the two 𝑃𝑚(𝑣𝑥,𝑣𝑦,𝑣𝑧) �̃�𝑥(𝑣𝑥) �̃�𝑥(𝑣𝑥)

directions perpendicular to the flight axis:

Figure S3: Definitions of variables based on the experimental setup. The blue patch on the MCP 
represents its effective area (48 mm in diameter)

Ion Cloud
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  . (S3)

�̃�𝑥(𝑣𝑥) =
∞

∫
‒ ∞

∞

∫
‒ ∞

𝑃(𝑣𝑥,𝑣𝑦,𝑣𝑧)𝑑𝑣𝑦𝑑𝑣𝑧 =
∞

∫
𝑣𝑥

𝐹(𝑣)
2𝑣

𝑑𝑣

The second equality follows from a standard change of variables; we omit the details here. In the 

experiment, the aperture on the Extractor electrode blocks energetic ions with large off-axis 

velocities, and only ions that satisfy the following inequality can pass:

 . (S4)𝑡𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛1 ∙ 𝑣2
𝑦 + 𝑣2

𝑧 < Δ

Equation S4 means that the distance traveled perpendicular to the flight axis in the extraction 

region must be less than the radius of the aperture. The above inequality implies that for a given 

value , the maximum total speed (the magnitude of the velocity) of a detected ion should be  𝑣𝑥

 : 𝑈(𝑣𝑥)

. (S5)
𝑈(𝑣𝑥) = (𝑣2

𝑥 +
1
2(Δ

𝑙0
)2(𝑣2

𝑥 + 𝑎0𝑙0 + 𝑣𝑥 𝑣2
𝑥 + 2𝑎0𝑙0))1/2

Figure S4: The lower and upper bounds of integration for Eq. S6 are denoted by the blue and 
yellow curves, respectively, for . The red lines depict our strategy to obtain Eq. S15. The 𝐴𝑟4 +

vertical red lines depict Eq. S11 for different values of ; the first and second terms on the left 𝑛
side of Eq. S11 are depicted respectively by the bottom and top red dots on the vertical red line. 
When we sum Eq. S11 for various ’s, the terms connected by the horizontal dotted red lines 𝑛
cancel out, leaving only the initial term corresponding to the first red dot when we take the sum 
of Eq. S11 for .𝑛 ≥  0
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This aperture effect reduces the upper bound of the integration in Eq. S3 to , and the values 𝑈(𝑣𝑥)

of  are shown in Figure S4. The projection of the velocity distribution in the -direction for 𝑈(𝑣) 𝑥

all ions passing through the aperture, , is thus given as follows:𝑃𝑥(𝑣𝑥)

 . (S6)

𝑃𝑥(𝑣𝑥) =

𝑈(𝑣𝑥)

∫
𝑣𝑥

𝐹𝑚(𝑣)

2𝑣
𝑑𝑣

The TOF profile for each charge state,  is related to the projected velocity distribution in the 𝑓𝑚(𝑡),

x direction via a Jacobian factor:

 . (S7)
𝑓𝑚(𝑡) = 𝑃𝑥(𝑣𝑥)

𝑑𝑣𝑥

𝑑𝑡

2.2 From TOF profile to kinetic energy distribution

From the experimental TOF profile  the projected distribution in the x-direction  𝑓𝑚(𝑡), 𝑃𝑥(𝑣𝑥)

can be derived via Eq. S7, from which the velocity magnitude distribution  can then be 𝐹𝑚(𝑣)

obtained based on Eq. S6 using the Fundamental Theorem of Calculus:

 . 

𝑑𝑃𝑥(𝑣𝑥)
𝑑𝑣𝑥

=
𝑈'(𝑣𝑥)
2𝑈(𝑣𝑥)

𝐹𝑚(𝑈(𝑣𝑥)) ‒
1

2𝑣𝑥
𝐹𝑚(𝑣𝑥)

(S8)

Equation S8 is the same as Eq. 4 in the main text, and since it contains the only variable , we 𝑣𝑥

can replace it by . We solve for  from Eq. S8 using a telescopic sum argument. First, we 𝑣 𝐹𝑚(𝑣)

rewrite the equation above as follows

 , (S9)𝐹𝑚(𝑣) ‒ 𝑔(𝑣)𝐹𝑚(𝑈(𝑣)) =‒ 2𝑣𝑃 '
𝑥(𝑣)

with . We then consider this equation evaluated at , the  𝑔(𝑣) = 𝑣𝑈'(𝑣)/𝑈(𝑣) 𝑈 ∘ 𝑛(𝑣) 𝑛𝑡ℎ

composition of the function  at , and multiplied by an overall factor of𝑈 𝑣
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 , (S10)
𝛼𝑛(𝑣) = 𝑔(𝑣)𝑔(𝑈(𝑣))⋯𝑔(𝑈 ∘ 𝑛 ‒ 1(𝑣)) =

𝑛 ‒ 1

∏
𝑘 = 0

𝑔(𝑈 ∘ 𝑘(𝑣))

for  and . That is, for ,𝑛 ≥  1 𝛼0 = 1 𝑛 ≥  0

 , (S11)𝛼𝑛(𝑣)𝐹𝑚(𝑈 ∘ 𝑛(𝑣)) ‒ 𝛼𝑛 + 1(𝑣)𝐹𝑚(𝑈 ∘ 𝑛 + 1(𝑣)) =‒ 2𝛼𝑛(𝑣)𝑈 ∘ 𝑛(𝑣)𝑃 '
𝑥(𝑈 ∘ 𝑛(𝑣))

where we have set . Next, we sum Eq. S11 for  and 𝑈 ∘ 0(𝑣) = 𝑣 𝑏𝑦 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑛 = 0, 1, …, 𝑁

obtain

 . (S12)
𝐹𝑚(𝑣) ‒ 𝛼𝑁 + 1(𝑣)𝐹𝑚(𝑈 ∘ (𝑁 + 1)(𝑣)) =‒ 2

𝑁

∑
𝑛 = 0

𝛼𝑛(𝑣)𝑈 ∘ 𝑛(𝑣)𝑃 '
𝑥(𝑈 ∘ 𝑛(𝑣))

By taking  and for any fixed , we have , as shown in Fig. S4, and 𝑁 →∞ 𝑣 𝑈 ∘ (𝑁 + 1)(𝑣)→∞

 since distributions decay to zero at infinity. Additionally, one may show that 𝐹𝑚(𝑈 ∘ (𝑁 + 1)(𝑣))→0

the terms  are bounded as  based on the convergence of Eq. S10, which is satisfied 𝛼𝑁 + 1(𝑣) 𝑁 →∞

if and only if the following infinite sum converges

 . (S13)

∞

∑
𝑘 = 0

[𝑔(𝑈 ∘ 𝑘(𝑣)) ‒ 1]

Using the ratio test, and based on the computed limit from Mathematica, we have

 , (S14)
lim
𝑘→∞

[𝑔(𝑈 ∘ (𝑘 + 1)(𝑣)) ‒ 1]/[𝑔(𝑈 ∘ 𝑘(𝑣)) ‒ 1] = 𝑙2
0/(𝑙2

0 + Δ2) <  1

thereby confirming the convergence of the infinite sum of Eq. S13 and the finite value of 

 as . Then, by taking  in Eq. S12, the second term on the left side goes to 𝛼𝑁 + 1(𝑣) 𝑁 →∞ 𝑁 →∞

zero since  and  are bounded. Consequently, we obtain an 𝐹𝑚(𝑈 ∘ (𝑁 + 1)(𝑣))→0 𝛼𝑁 + 1(𝑣)

expression for the distribution of the magnitude of the velocity:

 , (S15)
𝐹𝑚(𝑣) =‒ 2

∞

∑
𝑛 = 0

𝛼𝑛(𝑣)𝑈 ∘ 𝑛(𝑣)𝑃 '
𝑥(𝑈 ∘ 𝑛(𝑣))
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using  obtained from the TOF distribution  via Eq. S7. In practice, we truncate the 𝑃𝑥(𝑣𝑥) 𝑓𝑚(𝑡)

summation in Eq. S15 based on the desired level of precision; we discuss this further in the next 

section (2.3). We may also obtain a formula for the velocity distribution of the energetic ions 

 via Eq. S2 and Eq. S15.𝑃𝑚(𝑣𝑥,𝑣𝑦,𝑣𝑧)

The kinetic energy distribution is related to the velocity magnitude distribution by 𝑃𝑚(𝐸𝑘) 𝐹𝑚(𝑣) 

a Jacobian factor:

 , (S16)
𝑃𝑚(𝐸𝑘) = 𝐹𝑚(𝑣) ×

𝑑𝑣
𝑑𝐾𝑒

=‒
2

𝑚𝑣

∞

∑
𝑛 = 0

𝛼𝑛(𝑣)𝑈 ∘ 𝑛(𝑣)𝑃 '
𝑥(𝑈 ∘ 𝑛(𝑣))

where the second equality is due to Eq. S2.  

2.3 Calculation details

The calculation method detailed in the above section is time consuming, particularly when many 

terms are needed for a high precision. To speed up the calculation, we use a group of Gaussian 

functions to represent the projected velocity distribution in the x direction  𝑃𝑥(𝑣𝑥):

    (S17) 
𝑃𝑥(𝑣𝑥) =

𝑑𝑔

∑
𝑘 = 1

𝐴𝑘(𝑒

‒
(𝑥 ‒ 𝜇𝑘)2

2𝜎2
𝑘 )

where  is the amplitude,  is the center,  is the width, and  is the number of fitting terms, 𝐴𝑘 𝜇𝑘 𝜎𝑘 𝑑𝑔

which is typically 3 – 4 terms, depending on a statistical analysis. More terms result in a better 

representation of the projected velocity distribution, but also result in more time in calculation. 

We truncate the number of terms in Eq. S15 for numerical computations

, (S18)
𝐹(𝑣) ≈ ‒ 2

𝑑𝑡

∑
𝑛 = 0

𝛼𝑛(𝑣)𝑈 ∘ 𝑛(𝑣)𝑃 '
𝑥(𝑈 ∘ 𝑛(𝑣))
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where  depends on the desired level of precision and a physically meaningful result for . 𝑑𝑡 𝐹(𝑣)

When is too small, the calculation can result in a non-physical result in the low velocity 𝑑𝑡 

region: a negative value for , but when more terms are included, the negative region 𝐹(𝑣)

converges to zero. Thus, one of the lower limits of  is the number of terms required to achieve 𝑑𝑡

a physically meaningful distribution function. In addition, we also defined a convergence 

condition to be 0.1% of the difference in velocity between consecutive terms. For example, if the 

average velocity of  at  = 99 is 1.2874  m/s , and the velocity at  = 100 is 1.2881𝐴𝑟7 + 𝑑𝑡 × 107 𝑑𝑡

, we consider the series has converged, and the final velocity is 1.2881  m/s.  × 107𝑚/𝑠  × 107

The higher of the two limits for  is used in the calculation. 𝑑𝑡

Furthermore, an analytical expression of the velocity distribution  is crucial in calculating the 𝐹(𝑣)

final kinetic energy distribution, since the Jacobian factor in Eq. S16 would have a singular point 

as the speed approaches zero if treated numerically. We used a polynomial fit with an exponential 

decay function to represent the numerator of Eq. S16: 

 , (S19)
𝐹(𝑣) =

𝑑𝑠

∑
𝑘 = 1

𝑏𝑘𝑥𝑘𝑒 ‒ 𝑥

where  is the coefficient, and  is number of fitting terms.𝑏𝑘 𝑑𝑠

Interestingly, the resulting velocity magnitude distribution fits well with a Boltzmann-Maxwell 

distribution: 

, (S20)
𝐹(𝑣) = 𝐴(𝑣

𝜎)2𝑒
‒

1
2(𝑣

𝜎)2

where A is the amplitude, and  is the width. The  value of  can be related to temperature 𝜎 𝜎 𝐴𝑟4 +  

of the ions, which is roughly 200 eV (2.3 × 106 Kelvin) for doped clusters, and 50 eV (5.8 × 105 

Kelvin) for neat clusters.
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2.4 Validation of the mathematical approach

We performed a series of Monte-Carlo simulations to validate the above calculations. Using Ar4+ 

as an example, and based on an arbitrary gaussian distribution in kinetic energy shown by the 

dotted line in Fig. S5, we created a Python code to randomly create ten million ions and calculated 

their TOF profiles, as shown by the solid red line in Fig. S6. We also used SIMION to generate 

ten million ions with the same kinetic energy distribution and obtained the TOF profiles as shown 

by the solid grey line in Fig. S6. The discrete peaks in this simulation are results of the aperture: it 

behaves like a lens and its lensing effect depends on the KE of the ions, in almost a periodical 

fashion. These two profiles are in excellent agreement with that produced based on the above 

equations (dashed blue line in Fig. S6). The downward slope in the TOF profiles from the two 

Monte-Carlo simulations is a result of the bias in the random number generator function against 

very low kinetic energies. The solid black line in Figure S5 shows that the retrieved kinetic energy 

distribution from the derived TOF profile (dashed blue line) using Eq. S18.

To further validate the method, we used the derived  based on the results from Fig. 3 and 𝑃𝑚(𝐸𝑘)

Fig. 5, and calculated the expected TOF profile, again using Ar4+ as an example. Figure S7 

Figure S5: Comparison between the generated and the retrieved kinetic energy distributions.

Figure S6: Calculated TOF profiles of Ar4+ based on the KE distribution of Fig. S5 using three different 
methods. The peaks from SIMION simulation are a result of the lensing effect of the aperture on the 
Extractor electrode. The dashed blue line (calculation) does not contain the downward slope labeled by 
the red arrow, while both the SIMION and Monte Carol simulations come down in intensity above 2.09 
µs. 

Downward
Slope
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compares the original experimental TOF profile with the thus derived profiles. The agreement 

among all three profiles is remarkable, although the calculation from Eq. S1 does not include any 

effect of stray fields, and the treatment of Eq. S18 does not include any ions reflected from the 

Kicker electrode.
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Figure S7: Comparison between the experimental and the derived TOF profiles for Ar4+ from 
.𝐴𝑟8003𝐶𝑙𝐵0.07


