Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Additional Information

MoO₃ Nanowire Growth on VO₂/WO₃ for Thermochromic Applications

Amina Houimi^{1,2}, Mohamed A. Basyooni-M. Kabatas^{1,3,4*}, Mucahit Yilmaz⁵ and Yasin Ramazan Eker^{1,6}

¹Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey

²UNAM, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 068000, Turkey

³Dynamics of Micro and Nano Systems Group, Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands ⁴Solar and Space Research Department, National Research Institute of Astronomy and Geophysics, Cairo, Egypt

⁵Department of Fundamental Science, Necmettin Erbakan University, Konya, Turkiye ⁶Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkey

*Corresponding author: Mohamed A. Basyooni-M. Kabatas (m.kabatas@tudelft.nl & m.a.basyooni@gmail.com)

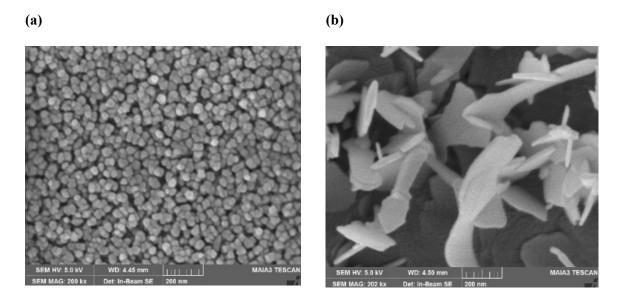


Fig. S1. SEM surface morphology of (a) VO_2 and (b) MoO_3 thin films.

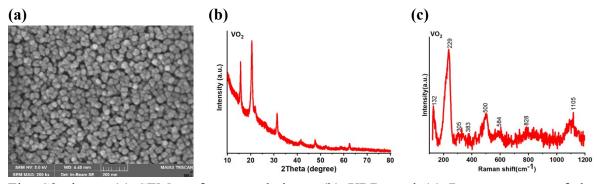


Fig. S2 shows (a) SEM surface morphology, (b) XRD, and (c) Raman spectra of the monoclinic structure of VO_2 .

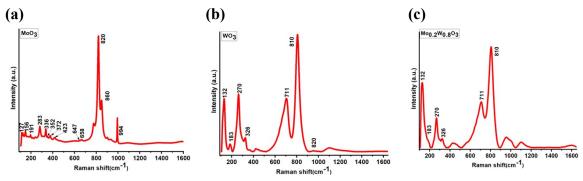


Fig. S3 shows Raman spectra of (a) MoO3, (b) WO3, and (C) $Mo_{0.2}W_{0.8}O_3$ Thin films.