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S1. Procedures for Drying the Solvents and Supporting Electrolyte:  

To eliminate moisture from the solvent i.e. DCM, molecular sieves of pore-size 3A were 

employed. Additionally, the supporting electrolyte i.e. Tetra Butyl Ammonium Perchlorate 

(TBAP) was subjected to a drying process by placing it in a vacuum oven and maintaining a 

temperature of 80 °C for an hour. These procedures were implemented to ensure the removal 

of any residual moisture or other volatile impurities from both DCM and TBAP.

S2. Detail analysis of XRD pattern: 

To measure the crystallite size of CsPbX3 perovskite nanocrystals (PNCs) in their cubic phase, 

we can employ crystallographic principles and geometric relationships. In the cubic phase, the 

CsPbX3 perovskite structure adopts a cubic lattice.42

1. Side Length Measurement (a): The side length (a) of the cubic unit cell can be determined 

using the formula: 

𝑎 = 2 𝑟
𝑋 ‒ + 2𝑟

𝑃𝑏2 +

𝑎 = 2 (𝑟
𝑋 ‒ + 𝑟

𝑃𝑏2 + )

Here, 𝑟x- represents the ionic radius of the halide ion (X-) and 𝑟𝑃𝑏
2+ represents the ionic 

radius of the lead ion (Pb2+). By adding the radii of these ions and multiplying by 2, we 

obtain the length of one side of the cubic unit cell.

2. Diagonal Length Measurement : The diagonal length of the cubic unit cell can be 

calculated using the Pythagorean theorem for a cube:

𝑎2 + 𝑎2 = (2 𝑟
𝑋 ‒ + 2𝑟

𝐶𝑠 + )2

2𝑎2 = (2 𝑟
𝑋 ‒ + 2𝑟

𝐶𝑠 + )2

√2𝑎 = 2(𝑟
𝑋 ‒ + 𝑟

𝐶𝑠 + )

𝑎 = √2(𝑟
𝑋 ‒ + 𝑟

𝐶𝑠 + )

Here, 𝑟𝐶𝑠+represents the ionic radius of the cesium ion (Cs+). By adding the radii of the 

halide and cesium ions, and then multiplying by √2, we obtain the diagonal length of the 

cubic unit cell.
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Table S1. Comparative values of Tolerance factor for CsPbX3 PNCs

Compound Tolerance factor

CsPbI3 PNCs 0.851

CsPbBr3 PNCs 0.862

CsPbCl3 PNCs 0.870

S3. To determine the number of crystallites contained within a single PNC

Consider the side length of crystallite ‘a’ for CsPbX3 PNCs

The volume V1 of a crystallite is calculated using the formula: 𝑉1 = 𝑎3

The observed side length of PNCs from TEM are approximately double than crystallite 

size of CsPbI3 and CsPbBr3 PNCs

Where, 2𝑎 is the side length of the PNC.

The volume V2 of a PNC is calculated using the formula:  𝑉2 = (2𝑎)3 = 8𝑎3

The number of crystallites that can fit inside the single PNC can be calculated by dividing 

the volume of the single PNC by the volume of single crystallite:

𝑛 =
𝑉2

𝑉1

𝑛 =
8𝑎3

𝑎3

𝑛 = 8

Hence, the single PNC of CsPbI3 and CsPbBr3 are made up of ~8 crystallites, suggesting 

his polycrystalline nature.
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Figure S1. Cyclic voltammograms recorded for ferrocene/ferrocenium redox couple as 

internal standard in 50 mM TBAP solution in dichloromethane.

Figure S2. Digital photographs of colloidal CsPbX3 (X = I, Br, Cl) PNCs dispersed in hexane 

under UV light.
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Figure S3. High-resolution XPS spectra of Cs, Pb and halogens. (A) Cs 3d and (B) Pb 4f spectra 

of CsPbX3 PNCs. (C) I 3d, (D) Br 3d and (E) Cl 2p spectra of CsPbI3, CsPbBr3 and CsPbCl3 PNCs.

Figure S4. (A)Photographs CsPbBr3 PNCs in different polar solvent [dimethyl sulfoxide (DMSO), 

dichloromethane (DCM), dimethylformamide (DMF), and acetonitrile (AN)] under visible light 

and under UV light; (B) Photoluminescence stability of CsPbBr3 PNCs in different polar solvents.
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Figure S5. A) Loading of electrons into PNCs. B) The addition of one electron to one PNCs 

results in the simultaneous creation of a hole in another quantum dot, leading to the formation 

of a non-interacting electron-hole pair characterized by a quasi-particle gap ( ). C) The 𝜀 𝑞𝑝
𝑔𝑎𝑝

formation of an interacting electron-hole pair within a PNCs, induced by an exciton, gives rise 

to an optical band gap. 

Consider a sphere of radius R and dielectric constant 2, surrounded by an organic entity 𝜀

here, oleic acid of dielectric constant 1.
39-41

 In the initial stage, electron addition occurs to the 𝜀

neutral quantum dot of energy Eo. Consider the addition of 3 electrons whose arrangement 

will adhere to the Paulis exclusion principle. When one electron is added to the conduction 

level e1 of the quantum dot, a perturbation occurs followed by energy conservation as  

(1)𝐸1 [𝑒1] = 𝐸𝑂 + 𝜀𝑒1

Where, e1 is the electron quasiparticle energy which includes contribution from its own 𝜀

quantum confinement and polarization by its own image charge on the quantum dot surface.

The energy required to add the first electron into the quantum dot is 

(2)𝜇1 = 𝐸1 [𝑒1] ‒ 𝐸𝑂

Similarly, the energy of the quantum dot when a second electron is added into the 

conduction level e1 is 
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(3)
𝐸

𝑒2
1

= 𝐸𝑂 + 2𝜀𝑒1
+ 𝐽𝑒1,𝑒1

and the energy required to add this electron is 𝜇2 = 𝐸2[𝑒2
1] ‒ 𝐸1[𝑒1]

Now, the energy when the third electron is added into the conduction level e2 of the 

quantum dot is 

(4)
𝐸

[𝑒2
1𝑒1

2]
= 𝐸𝑂 + 2𝜀𝑒1 + 𝐽𝑒1𝑒1

+ 2𝐽𝑒1𝑒2
‒ 𝐾𝑒1𝑒2

Where,  is exchange energy between parallel spin electrons in the two different 
𝐾𝑒1,𝑒2

conduction levels. Thus the energy required to add this electron is 

𝜇3 = 𝐸3[𝑒2
1𝑒1

2] ‒ 𝐸2[𝑒2
1]

Next process is the creation of wannier exciton which is the bound state of an electron-hole 

pair arising due to coloumbic interaction between the charge carriers. The distance between the 

hole and electron in the Bohr radius of exciton aB and is given by 

                                        (5)

𝑎𝐵 =
4𝜋𝜀𝑂𝜀∞ℏ2

𝑒2
(

1

𝑚 ∗
𝑒

+
1

𝑚 ∗
ℎ

)

Where, , ,  and  are the effective electron, hole masses, dielectric constant of the 𝑚 ∗
𝑒 𝑚 ∗

ℎ 𝜀𝑜 𝜀∞

quantum dot and medium respectively.

Using the Brus and Franceschetti model, the behavior of exciton occurs in two ways:

An electron can be removed from the valence band of one quantum dot to the conduction band 

of another quantum dot located at infinite distance from each other. This can be mathematically 

expressed as R << , i.e., the electrons and holes have no limited bound states thereby deprived 𝑎𝐵

of any coloumbic interaction. This energy that is acquired to produce a non-interacting electron-

hole pair is the quasi-particle energy and is modelled to a particle in a spherically symmetric 

potential well2 with infinite barrier whose energy values can be expressed as,

         (6)𝐸 =  𝐸𝑔 +  𝐸𝑛𝑙 = 𝜀𝑞𝑝
𝑔

Where,                  (7)

𝐸𝑛𝑙 =
𝜒𝑛𝑙2ℏ2

2𝑅2
(

1

𝑚 ∗
𝑒

+
1

𝑚 ∗
ℎ

)
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Where R is the nanocrystal radius and are the roots of spherical Bessel function with n and 𝜒𝑛𝑙

l representing the principal and orbital quantum numbers respectively. 

For the lowest state (n=, l = 0) = πn, energy can be expressed as 𝜒𝑛0

          (8)

𝐸𝑛𝑙 =
𝜋2ℏ2

2𝑅2
(

1

𝑚 ∗
𝑒

+
1

𝑚 ∗
ℎ

)

In contrast, an electron can be optically excited from the highest occupied valence band to the 

lowest unoccupied conduction band of the same quantum dot. This state occurs when R >> , 𝑎𝐵

and now the electron and hole are limited to a space comparable with the exciton ground state 

in ideal infinite crystal and cannot be considered as a single particle but rather requires a 

Hamiltonian with two definite terms to define it; confinement and coloumbic potential. 

           (9)
𝐻 =‒

ℏ2

2𝑚𝑒
∇2

𝑒 ‒
ℏ2

2𝑚ℎ
∇2

ℎ ‒
𝑒2

𝜀|𝑟𝑒 ‒ 𝑟ℎ|
+ 𝑈(𝑟)

Brus3 had used a vibrational approach to solve this and this energy corresponding to the optical 

excitation energy is inclusive of the coloumbic interactions and is given by

E                     (10)

= 𝐸𝑔 +
𝜋2ℏ2

2𝑚𝑜𝑅2( 1

𝑚 ∗
𝑒

+
1

𝑚 ∗
ℎ

) ‒
𝐴𝑒2

4𝜋𝜀𝑜𝜀∞𝑅
= 𝜀𝑜𝑝

𝑔

Where, e is the elementary charge, A is a coefficient equal to 1.786 for  state.1𝑠𝑒1𝑠ℎ

Due to this electron-hole coloumbic interaction, the optical bandgap is lower than the 

actual quasiparticle band gap observed in cyclic voltammetry as proven above.
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Figure S6. Scan-rate dependent response and linear fitting of peak currents of the CVs recorded 

on CsPbX3 PNCs. (A-B)CsPbI3; (C-D)CsPb(I-Br)3; (E-F)CsPbBr3; (G-H)CsPb(Br-Cl)3.
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Table S1. Comparative values of lattice parameter, microstrain, and dislocation density for 
CsPbX3 PNCs

Sr. 2θ FWHM lattice parameter Microstrain 
(10-3)

Dislocation density

A CsPbI3 PNCs
1 14.16 0.8064 (100) 28.33 0.009299
2 20.48 2.5547 (110) 61.69 0.09183
3 28.77 1.0007 (200) 17.02 0.01364
4 35.37 1.2131 (211) 16.60 0.01939
5 42.84 2.9501 (220) 32.81 0.07631
B CsPb(I-Br)3 PNCs
1 14.923 0.62411 (100) 20.79 0.00556
2 21.229 0.62344 (110) 14.51 0.00545
3 26.099 0.54215 (111) 10.21 0.00405
4 30.266 0.65924 (200) 10.64 0.00588
5 33.903 0.60717 (210) 8.69 0.00489
6 37.301 0.61666 (211) 7.97 0.00495
7 43.337 0.69968 (220) 7.68 0.00614
C CsPbBr3 PNCs
1 14.965 1.17269 (100) 38.90 0.0196
2 21.24 0.94004 (110) 21.88 0.0126
3 30.35 0.90053 (200) 23.61 0.0291
4 37.54 1.10066 (211) 14.13 0.0158
5 43.64 1.12176 (220) 12.22 0.0157
D CsPb(Br-Cl)3 PNCs
1 15.479 1.3167 (100) 42.27 0.0247
2 21.869 1.4618 (110) 33.02 0.0299
3 31.243 1.0439 (200) 16.29 0.0146
4 38.617 1.7185 (211) 21.40 0.0381
5 44.875 1.2887 (220) 13.62 0.0205
E CsPbCl3 PNCs
1 15.565 1.0935 (100) 34.91 0.0169
2 22.792 4.2214 (110) 91.38 0.2475
3 31.639 1.2339 (200) 19.00 0.0204
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