Supplementary information

1. Calculations of pathways for an $S_N 2$ mechanism similar to that in work on CHA zeolite.¹

We have also modelled the dehydration of methanol to DME by an S_N2 -like mechanism as suggested in the above paper.¹ Our calculated intrinsic barriers for this geometry in both the associative and dissociative pathways are shown below in SI Figure 1 and are considerably higher than those for the mechanisms we propose in the main text.

SI Figure 1 Calculated (DFT-D3) reaction coordinate diagram for the dehydration of methanol to DME by associative and dissociative mechanisms both involving concerted $S_N 2$ backside attack as suggested in work on CHA zeolite (J.R. Di Iorio et al., Journal of Catalysis 380 (2019) 161–177)). Since the reaction pathway differs for each mechanism only Reactant, M1, and Product are labelled on the x-axis, axis and individual labels can be found on the diagram. Labels refer to reaction coordinate structures in SI Figures 2 and 3.

SI Table 1 – Comparing reaction enthalpies (H_{PBE+D3} ; kJ mol ⁻¹) of the dissociative mechanism proposed in our work and
a dissociative mechanism involving the $S_N 2$ step, calculated at the DFT-D3 level of theory.

Dissociative	Reactant	M1	TS1	M2	Int	M3	TS2	Product
S _N 2	0	-41	147	-7	7	-9	100	-61
Mechanism proposed in our paper	0	-41	87	-7	7	-9	100	-61

SI Figure 2 - Structures involved in the reaction coordinate for a dissociative mechanism with an S_N 2-like transition state.

SI Table 2 - Comparing reaction enthalpies (H_{PBE+D3} ; kJ mol⁻¹) of the associative mechanism proposed in our paper and an associative mechanism involving the S_N 2 step, calculated at the DFT-D3 level of theory.

Associative	Reactant	M1	M4	TS	M5	Product
S _N 2	0	-41	-65	149	-74	-61
Mechanism proposed in paper	0	-41	-65	38	-74	-61

2. K-point sampling

SI Figure 4 shows the calculated energies of a SiO₂ silicalite structure (Si Figure 6) with different k-point grids.

SI Figure 5 - Residual force and energy of the SiO_2 silicalite structure. The residual value was calculated as the value calculated with a 20x20x20 k-point grid minus that using the n x n x n k-point grid.

SI Figure 6: SiO₂ silicalite structure used for k-point convergence testing

3. Functional

The experimental bond lengths at the BAS, shown in SI Figure 7, and the lattice parameters of ZSM-5 were used as a test of the accuracy of the functional chosen (PBE+D3BJ). A comparison of theory and experiment are in SI Table 1. The calculated bond lengths and lattice parameters are within 2 % of the experimental.

SI Figure 7 - The Brønsted acid site structure. The key atoms are labelled. Colour key: red, oxygen, yellow, silicon, blue, aluminium, white, hydrogen.

SI Table 1 – Si-O, Si-O_{ba}, Al-O, Al-O_{ba} and H_{ba} -O_{ba} bond lengths (Å), lattice parameters (Å) and cell volume (Å³) for H-ZSM-5 zeolite, _{ba} denotes an atom at the Brønsted acid site. An asterisk (*) denotes an average.

		bo	nd lengt	:hs (Å)		lattice	e parame	eters (Å)	
	Si-O	Si-O _{ba}	Al-O	Al-O _{ba}	H _{ba} -O _{ba}	а	b	С	Cell Volume (ų)
This work	1.60	1.70	1.69	1.83	1.00	20.09	19.74	13.14	5211.28
Crystal Structure	1.61	1.67	1.70	1.78	1.06	20.09	19.74	13.14	5211.28
Exp ²	1.59*					20.07	19.92	13.41	5361.24
Exp ³					1.01*				
Exp ⁴	1.59*								
Exp ⁵						19.86	19.74	12.95	5076.87
Exp ⁶						20.07	19.93	13.41	5367.95

4. Enthalpies calculated with PBE+D3, Δ MP2, and Δ CCSD(T) corrections for each promoter

The tables (SI Table 2 – SI Table 8) show the contribution of each individual QM method to the overall final enthalpies for the stages in the associative mechanism for each promoter.

SI Table 2 - Reaction enthalpies (ΔH ; kJ mol⁻¹) relative to the reactant of intermediates and transition states involved in the dissociative mechanism of methanol dehydration to dimethyl ether with methyl formate, values calculated with the hybrid multilevel QM scheme.

Dissociative		Reaction coordinate											
mechanism													
	Reactant	M1	P2	TS1	M5	Int	M3	TS2	Product				
ΔH _{Final}	0	-45	-30	192	-59	-22	-42	113	-85				
<i>Н</i> _{РВЕ+D3}	0	-41	-39	166	-47	7	-9	100	-65				
ΔΗ _{ΜΡ2}	0	0	15	31	-8	-21	-24	25	-18				
$\Delta H_{CCSD(T)}$	0	-4	-6	-5	-4	-8	-9	-12	-2				

SI Table 3 - Reaction enthalpies (ΔH ; kJ mol⁻¹) relative to the reactant of intermediates and transition states involved in the associative mechanism of methanol dehydration to dimethyl ether with methyl formate, values calculated with the hybrid multilevel QM scheme.

Associative mechanism		Reaction coordinate												
	Adsorp	tion		Reac	tion 1			Reac	tion 2					
	Reactant	P1	P1‡	P1*	P1 *‡	Р3	P4	P4 [‡]	P5*	P5 *‡	Product			
ΔH_{Final}	0	-73	-6	-55	-28	-90	-104	-49	-90	-22	-92			
H _{PBE+D3}	0	-70	-25	-50	-48	-79	-77	-55	-68	-34	-71			
ΔΗ _{ΜΡ2}	0	0	18	-2	16	-13	-26	10	-21	9	-20			
ΔH _{CCSD(T)}	0	-3	1	-3	4	2	-1	-4	-1	3	-1			

SI Table 4 - Reaction enthalpies (ΔH ; kJ mol⁻¹) relative to the reactant of intermediates and transition states involved in the dissociative mechanism of methanol dehydration to dimethyl ether with methyl acetate, values calculated with the hybrid multilevel QM scheme.

		Reaction coordinate													
	Adsorp	tion		Reac	tion 1			Reac	tion 2						
	Reactant	P1	P1 [‡]	P1*	P1 *‡	Р3	P4	P4 [‡]	P5*	P5 *‡	Product				
∆H _{Final}	0	-82	-33	-99	-50	-100	-114	-64	-119	-48	-120				
ΔH _{PBE+D3}	0	-83	-52	-91	-63	-96	-94	-75	-97	-56	-93				
Δ <i>Η</i> _{MP2}	0	0	21	-10	12	-4	-18	12	-23	8	-27				
$\Delta H_{\text{CCSD}(T)}$	0	1	-2	2	1	0	-2	-1	1	0	0				

SI Table 5 - Reaction enthalpies (ΔH ; kJ mol⁻¹) relative to the reactant of intermediates and transition states involved in the dissociative mechanism of methanol dehydration to dimethyl ether with methyl propionate, values calculated with the hybrid multilevel QM scheme.

		Reaction coordinate												
	Adsorp	tion		Reac	tion 1			Reac	tion 2					
	Reactant	P1	P1 [‡]	P1*	P1 *‡	Р3	P4	P4 [‡]	P5*	P5 *‡	Product			
ΔH_{Final}	0	-94	-48	-123	-58	-124	-131	-87	-132	-71	-138			
ΔH _{PBE+D3}	0	-94	-71	-112	-77	-112	-110	-106	-123	-83	-114			
ΔH_{MP2}	0	0	20	-11	19	-13	-19	23	-7	11	-21			
ΔH _{CCSD(T)}	0	0	3	0	0	1	-2	-4	-2	1	-3			

SI Table 6 - Reaction enthalpies (ΔH ; kJ mol⁻¹) relative to the reactant of intermediates and transition states involved in the dissociative mechanism of methanol dehydration to dimethyl ether with methyl *n*-butyrate, values calculated with the hybrid multilevel QM scheme.

		Reaction coordinate												
	Adsorp	tion		Reac	tion 1			Reac	tion 2					
	Reactant	P1	P1 [‡]	P1*	P1 *‡	Р3	P4	P4 [‡]	P5*	P5 *‡	Product			
∆H _{Final}	0	-104	-60	-132	-72	-130	-136	-95	-137	-84	-147			
ΔH _{PBE+D3}	0	-104	-80	-122	-91	-120	-118	-113	-131	-95	-125			
ΔH_{MP2}	0	0	20	-10	20	-10	-17	22	-5	10	-20			
$\Delta H_{\text{CCSD}(T)}$	0	0	0	0	-1	0	-3	-4	-1	1	-2			

SI Table 7 - Reaction enthalpies (ΔH ; kJ mol⁻¹) relative to the reactant of intermediates and transition states involved in the dissociative mechanism of methanol dehydration to dimethyl ether with methyl *n*-pentanote, values calculated with the hybrid multilevel QM scheme.

		Reaction coordinate													
	Adsorp	tion		Reac	tion 1			Reac	tion 2						
	Reactant	P1	P1 [‡]	P1*	P1 *‡	Р3	P4	P4 [‡]	P5*	P5 *‡	Product				
ΔH_{Final}	0	-109	-66	-137	-76	-136	-148	-104	-150	-97	-152				
ΔH _{PBE+D3}	0	-107	-85	-126	-95	-124	-122	-120	-135	-102	-129				
ΔΗ_{MP2}	0	-3	20	-10	19	-12	-23	17	-14	4	-22				
ΔH _{CCSD(T)}	0	1	-1	-1	0	0	-3	-1	-1	1	-1				

SI Table 8 - Reaction enthalpies (ΔH ; kJ mol⁻¹) relative to the reactant of intermediates and transition states involved in the dissociative mechanism of methanol dehydration to dimethyl ether with methyl *n*-hexanoate, values calculated with the hybrid multilevel QM scheme.

		Reaction coordinate													
	Adsorp	tion		Rea	ction 1			Reac	tion 2						
	Reactant	P1	P1‡	P1*	P1 *‡	Р3	P4	P4 [‡]	P5*	P5 *‡	Product				
∆H _{Final}	0	-119	-71	-145	-80	-144	-156	-118	-162	-106	-166				
ΔH _{PBE+D3}	0	-119	-90	-135	-103	-134	-122	-127	-140	-116	-139				
ΔΗ _{ΜΡ2}	0	0	23	-9	25	-10	-28	10	-21	9	-26				

	0	0	-4	-1	-2	0	-6	-1	-1	1	-1
$\Delta H_{\text{CCSD}(T)}$	-					-	_				

5. Geometric parameters

SI Table 9 – Bond lengths and angles involved in the transition state for the protonation of the promoter molecules, atom labels as in the left of Figure 9.

	bond lengths / (Å)			bond angles / (°)		
Promoter	01-H1	O2-H1	01-02	С1-О2-Н1	01-H1-02	
methyl formate	1.41	1.27	2.76	160	167	
methyl acetate	1.38	1.27	2.66	159	168	
methyl propionate	1.39	1.26	2.66	156	168	
methyl <i>n</i> - butyrate	1.40	1.27	2.66	155	163	
methyl <i>n</i> - pentanoate	1.39	1.26	2.66	159	168	
methyl <i>n</i> - hexanoate	1.39	1.27	2.64	156	168	

SI Table 10 - Bond lengths involved in the transition state for the formation of DME, atom labels as in the right of Figure 9.

	bond lengths / (Å)					
Promoter	01-C1	C1-02	02-H1	H1-O3	O3-H2	H2-O4
methyl formate	2.15	1.82	0.99	1.63	0.95	2.19
methyl acetate	2.07	1.81	1.00	1.61	0.96	2.20
methyl propionate	1.98	1.93	1.01	1.58	0.95	2.20
methyl <i>n-</i> butyrate	2.06	1.83	1.01	1.58	0.95	2.20
methyl <i>n</i> - pentanoate	2.07	1.83	1.02	1.59	0.99	2.15
methyl <i>n</i> - hexanoate	1.97	1.93	1.02	1.58	0.96	2.20

SI Table 11 - Bond lengths involved in the transition state for the re-esterification of the promoter, atom labels as i	n
the left of Figure 9.	

	bond lengths / (Å)					
Promoter	01-C1	C1-O2	O2-H1	H1-O3	O3-H2	H2-O4
methyl formate	2.09	1.82	1.02	1.51	0.98	2.1
methyl acetate	1.9	2	1.01	1.56	0.98	2.1
methyl propionate	1.81	2.07	1.01	1.56	0.98	2.06
methyl <i>n</i> - butyrate	1.99	1.92	1.01	1.52	0.98	2.12
methyl <i>n-</i> pentanoate	1.92	1.99	1.02	1.55	0.98	2.06
methyl <i>n</i> - hexanoate	2.1	1.8	1.01	1.55	0.97	2.06

SI Table 12 - Bond lengths and angles involved in the transition state for the deprotonation of the promoter molecules, atom labels found as in the right of Figure 9.

	bond lengths / (Å)			bond angles / (°)		
Promoter	01-H1	O2-H1	01-02	C1-O2-H1	01-H1-02	
methyl formate	1.29	1.4	2.67	161	165	
methyl acetate	1.3	1.39	2.68	160	168	
methyl propionate	1.27	1.39	2.64	158	168	
methyl <i>n-</i> butyrate	1.26	1.39	2.63	157	169	
methyl <i>n</i> - pentanoate	1.3	1.37	2.66	160	168	
methyl <i>n</i> - hexanoate	1.27	1.39	2.64	155	167	

SI Bibliography

- 1 J. R. Di Iorio, A. J. Hoffman, C. T. Nimlos, S. Nystrom, D. Hibbitts and R. Gounder, *J. Catal.*, 2019, **380**, 161–177.
- 2 D. H. Olson, G. T. Kokotallo and S. L. Lawton, J. Phys. Chem., 1981, **85**, 646–648.
- 3 H. Huo, L. Peng and C. P. Grey, *J. Phys. Chem. C*, 2011, **115**, 2030–2037.
- 4 H. Van Koningsveld, *Acta Crystallographica Section B*, 1990, **46**, 731–735.
- 5 E. Dib, T. Mineva, E. Veron, V. Sarou-Kanian, F. Fayon and B. Alonso, *J. Phys. Chem. Lett.*, 2018, **9**, 19–24.
- 6 Y. Yokomori and S. Idaka, *Microporous and Mesoporous Materials*, 1999, **28**, 405–413.