Three-dimensional flower-like Ni-S/Co-MOF grown on Ni foam as bifunctional electrocatalyst for efficient overall water splitting

Chang Su^a, Dan Wang^b, Wenchang Wang^{b,c}, Naotoshi Mitsuzaki^d, Rong Shao^e, Qi Xu^e, Zhidong

Chen*a,b

- ^a School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- ^a School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.

^b Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced

Catalysis and Green Manufacturing Collaborative Innovation Center, School of

Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R China.

^c Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu, 213032, China.

215052, China.

- ^d Qualtec Co., Ltd, Osaka, 590-0906, Japan
- ^e Yancheng Institute Of Technology, Yanchen ,224007, China.

Corresponding author E-mail : *Z. Chen: <u>zdchen@cczu.edu.cn</u>,

Materials and Reagents

The cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), nickel nitrate hexahydrate (Ni (NO₃)₂·6H₂O) and sodium carbonate (NaNO₃) were obtained from Sinopharm Chemical Reagent Co. Ltd. The 2aminoterephthalic acid (2-NH₂-BDC) and thiourea (H₂NCSNH₂) were purchased from Sigma-Aldrich Co. ltd. The potassium hydroxide (KOH) and N,N dimethylformamide (DMF) were purchased from Shanghai Maclean Biochemical Technology Co., ltd. Besides, ultrapure water (18.2 MΩ) was utilized throughout the whole experiment. The purity of all reagents more than 99%.

Materials characterization

The morphologies and microstructures of the prepared products were tested by scanning electron microscope (SEM, JSM-6360LA, Japan) and transmission electron microscopy (TEM, JEM-2010, Japan). The X-ray diffraction (XRD) was used to identify the crystal phases of products on the Max-2000 (Rigaku Co., Ltd., Japan) and X-ray photoelectron spectroscopy (XPS) can be used to analyze the elemental chemical states of the catalyst materials on the AXIS-Ultra DLD (Shimazu, Japan).

Fig. S1. The SEM images of the bare NF (A) and the Ni-S/Co-MOF/NF (B), Ni/NF (C), Ni-S/NF (D).

Fig. S2. Polarization curves of Co-MOF/NF with various deposition time (A), applied potential (B) and the concentration of Co²⁺ in 1 M KOH.

Fig. S3. Polarization curves of Ni-S/Co-MOF/NF with various deposition time (A), applied potential (B) and the concentration of Ni²⁺ in 1 M KOH.

Fig. S4. CV curves of various electrodes in the potential window from 0.05 to 0.15 V (vs. RHE) at 20, 30, 40, 50, and 60 mV s⁻¹: (A) Co-MOF/NF, (B) Ni/NF, (C) Ni-S/NF and (D) Ni-S/Co-MOF/NF.

Fig. S5. Double-layer capacitances (C_{dl}) of the four samples derived from the cyclic voltammograms.

Fig. S6. (A, B) SEM images of Ni-S/Co-MOF/NF before and after 16 h of stability test at a constant current density for HER and OER, respectively. (C,D) High resolution XPS spectra of Ni-S/Co-MOF/NF after stability test for HER.

Fig. S7. High resolution XPS spectra of Ni-S/Co-MOF/NF after stability test for OER.

Catalyst	η_{10}/mV	Tafel slope/ mV dec ⁻¹	Electrolyte	Reference
Ni-S/Co-MOF/NF	248	29.1	1М КОН	This work
CoFe-MOF	265	44	1M KOH	1
NiCo-MOF@Fe-MOF	275	54	1М КОН	2
CoPS@NPS-C	320	45	1M KOH	3
Hollow CoS ₂ –MoS ₂	266	104	1M KOH	4
Ni-S/MIL-53(Fe)	256	39	1M KOH	5
Fe-Co-Ni MOF	254	51.3	1M KOH	6
(Ni ₂ Co ₁) _{0.925} Fe _{0.075} -MOF	257	41.3	1M KOH	7
Co-BPDC/Co-BDC-3	335	72.1	1M KOH	8
Co-Ni@HPA-MOF	320	58	1M KOH	9
CoWO ₄ -Co(OH) ₂	280	70.6	1M KOH	10

Table S1. Comparison of OER activity at 10 mA cm⁻² and stability of various Co-based MOFs catalysts.

Catalyst	η_{10}/mV	Tafel slope/ mV dec ⁻¹	Electrolyte	Reference
Ni-S/Co-MOF/NF	127	32.25	1М КОН	This work
CoPS@NPS-C	320	45	1М КОН	3
CoNC@MoS2/CNFs	143	68	1М КОН	11
BP/MOF-Fe/Co	180	67	1М КОН	12
CoCoO/ZnFe ₂ O ₄ @CNWs	226	138	1M KOH	13
NiCo-MOF-P	195	105	1M KOH	14
Ni-Co-Se/CFP	162	54	1М КОН	15

Table S2. Comparison of HER activity at 10 mA cm⁻² and stability of various Co-based MOFs catalysts.

Catalyst	Volatage/	Electrolyte	Reference	
	V	·		
Ni-S/Co-MOF/NF	1.59	1М КОН	This work	
BP/MOF-Fe/Co	1.63	1M KOH	3	
Fe-Co-Ni-MOF	1.60	1M KOH	6	
CoNC@MoS2/CNF	1.62	1M KOH	11	
CoNiP/NF	1.62	1M KOH	16	
FeCoMnNi-MOF-74/NF	1.62	1M KOH	17	
Co,Fe-MOF-74/Co/CC	1.65	1M KOH	18	

 Table S3. Comparison of overall water splitting at 10 mA cm⁻² and stability of various Co-based MOFs catalysts.

Notes and references

	1. Z. Zou, T. Wang, X. Zhao, WJ. Jiang, H. Pan, D. Gao and C. Xu, ACS Catalysis, 2019, 9,
	7356-7364.
2.	K. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou, J. Chen, J. Zhu, W. Sun, W. Huang and S. X. Dou,
	Advanced Functional Materials, 2018, 28.
3	Y. Hu, F. Li, Y. Long, H. Yang, L. Gao, X. Long, H. Hu, N. Xu, J. Jin and J. Ma, <i>Journal of</i>
	Materials Chemistry A, 2018, 6, 10433-10440.
	4. Y. Li, W. Wang, B. Huang, Z. Mao, R. Wang, B. He, Y. Gong and H. Wang, <i>Journal of</i>
	Energy Chemistry, 2021, 57, 99-108.
	5. F. Wu, X. Guo, G. Hao, Y. Hu and W. Jiang, <i>Nanoscale</i> , 2019, 11 , 14785-14792.
	6. F. Shahbazi Farahani, M. S. Rahmanifar, A. Noori, M. F. El-Kady, N. Hassani, M. Neek-
	Amal, R. B. Kaner and M. F. Mousavi, Journal of the American Chemical Society, 2022, 144,
	3411-3428.
	7. Q. Qian, Y. Li, Y. Liu, L. Yu and G. Zhang, <i>Adv Mater</i> , 2019, 31 , e1901139.
	8. Q. Zha, F. Yuan, G. Qin and Y. Ni, <i>Inorg Chem</i> , 2020, 59 , 1295-1305.
9	M. Lu, Y. Li, P. He, J. Cong, D. Chen, J. Wang, Y. Wu, H. Xu, J. Gao and J. Yao, Journal of
	Solid State Chemistry, 2019, 272, 32-37.
	10. H. Xu, C. Wang, G. He, H. Chen and Y. Du, <i>Inorg Chem</i> , 2022, 61 , 14224-14232.
	11. D. Ji, S. Peng, L. Fan, L. Li, X. Qin and S. Ramakrishna, <i>Journal of Materials Chemistry A</i> ,
	2017, 5 , 23898-23908.
]	12. K. Ge, Y. Zhang, Y. Zhao, Z. Zhang, S. Wang, J. Cao, Y. Yang, S. Sun, M. Pan and L. Zhu,
	ACS Appl Mater Interfaces, 2022, 14, 31502-31509.
	13. W. Liu, Y. Zhou, J. Bao, J. Wang, Y. Zhang, X. Sheng, Y. Xue, C. Guo and X. Chen, J
	Colloid Interface Sci, 2020, 561, 620-628.
	14. M. M. Rajpure, H. A. Bandal, H. S. Jadhav and H. Kim, Journal of Electroanalytical
	<i>Chemistry</i> , 2022, 923 , 116825.
	15. K. Ao, J. Dong, C. Fan, D. Wang, Y. Cai, D. Li, F. Huang and Q. Wei, ACS Sustainable
	Chemistry & Engineering, 2018, 6, 10952-10959.
	16. H. Liu, R. Huang, W. Chen, Y. Zhang, M. Wang, Y. Hu, Y. Zhou and Y. Song, <i>Applied</i>
	<i>Surface Science</i> , 2021, 569 .
1	7. M. Zhang, W. Xu, T. Li, H. Zhu and Y. Zheng, <i>Inorganic Chemistry</i> , 2020, 59 , 15467-15477.
1	8. Q. Zha, M. Li, Z. Liu and Y. Ni, ACS Sustainable Chemistry & Engineering, 2020, 8, 12025-

12035.