Supporting Information: Can P₃S and C₃S Monolayers be Used as Anode Materials in Metal-Ion Batteries? An Answer from First-Principles Study

Somnath Chowdhury¹, Pranab Sarkar², Bikash Chandra Gupta^{1*}

¹Department of Physics, Visva-Bharati, Santiniketan, India, 731235

² Department of Chemistry, Visva-Bharati, Santiniketan, India, 731235

* Corresponding author.

E-mail address: bikashc.gupta@visva-bharati.ac.in

Index

1. Supporting Fig	gures	S2-S9
Figure S1.	Electronic properties (Band structure and total density of states): pristine P_3S and C_3S monolayers. Fermi levels are set to zero. (PBE calculations)	S2
Figure S2.	Electronic properties (Band structure and total density of states): pristine (a,b) P ₃ S and (c,d) C ₃ S monolayers. Fermi levels are set to zero. (PBEsol calculations).	S3
Figure S3.	Electronic properties (Band structure and total density of states) of the single alkali metal adsorbed P ₃ S and C ₃ S monolayers: (a-c) and (d-f) represent Li-, Na-, and K-adsorbed P ₃ S and C ₃ S systems, respectively. Fermi levels are set to zero.(PBEsol calculation)	S4
Figure S4.	Phonon band structure and partial density of states for $(3 \times 3 \times 1)$ pristine P ₃ S and C ₃ S monolayers.	S5
Figure S5.	Relaxed structures of the single alkali metal (Li, Na, and K) adsorbed P ₃ S and C ₃ S monolayers at their most favored sites. [top and side view].	S6
Figure S6.	Optimized geometries of the (a) monolayer Li-adsorbed P_3S , (b) bilayer Li- adsorbed P_3S , (c) tetralayer Li-adsorbed P_3S , (d) monolayer Na-adsorbed P_3S , (e) bilayer Na-adsorbed P_3S , (f) monolayer K-adsorbed P_3S , and (g) bilayer K- adsorbed P_3S composite systems [top and side view]	S7
Figure S7.	Optimized geometries of the (a) monolayer Li-adsorbed C_3S , (b) bilayer Li- adsorbed C_3S , (c) monolayer Na-adsorbed C_3S , (d) bilayer Na-adsorbed C_3S , (e) tetralayer Na-adsorbed C_3S , (f) monolayer K-adsorbed C_3S , (g) bilayer K-adsorbed C_3S , (h) tetralayer K-adsorbed C_3S , and (g) hexalayer K-adsorbed C_3S composite systems [top and side view]	S8
Figure S8.	(a) Possible diffusion pathway of two K-atoms from one most favored T_{BH} -site to another T_{BH} -site simultaneously in C3S monolayer and (b) its corresponding energy profile diagram.	S9
2. Supporting Ta	blesS1	0-S12
Table S1.	Structural information of pristine P ₃ S and C ₃ S monolayers.	S10
Table S2.	Adsorption energies (^{E}ad) for the single alkali metal adsorbed P ₃ S and C ₃ S monolayers.	S10
Table S3.	Charge transfer (Bader charge analysis) from the alkali metals to the monolayers and diffusion barrier of the single alkali metal adsorbed P ₃ S and C ₃ S systems.	S11
Table S4.	Layer-by-layer adsorption energies (^{E}ad), average open-circuit voltage (OCV), and maximum theoretical capacities (C) of the alkali metal adsorbed P ₃ S and C ₃ S systems.	S11
Table S5.	Details of volume expansion calculation of alkali metal adsorbed P_3S and C_3S systems at their maximum adsorbed geometries	S12

Figure S1. Electronic properties (Band structure and total density of states): pristine (a,b) P_3S and (c,d) C_3S monolayers. Fermi levels are set to zero. (PBE calculations).

Figure S2. Electronic properties (Band structure and total density of states): pristine (a,b) P_3S and (c,d) C_3S monolayers. Fermi levels are set to zero. (PBEsol calculations).

Figure S3. Electronic properties (Band structure and total density of states) of the single alkali metal adsorbed P_3S and C_3S monolayers: (a-c) and (d-f) represent Li-, Na-, and K-adsorbed P_3S and C_3S systems, respectively. Fermi levels are set to zero.

Figure S4. Phonon band structure and partial density of states for $(3 \times 3 \times 1)$ pristine P₃S (a,b) and C₃S (c,d) monolayers, respectively.

Figure S5. Relaxed structures of the single alkali metal adsorbed P_3S and C_3S monolayers at their most favored sites: (a-c) and (d-f) Li-, Na-, and K-adsorbed P_3S and C_3S systems, respectively [top and side view] (The violet, brown, yellow, green, golden yellow and purple balls represent P, C, S, Li, Na, and K atoms, respectively).

Figure S6. Optimized geometries of the (a) monolayer Li-adsorbed P_3S , (b) bilayer Li-adsorbed P_3S , (c) tetralayer Li-adsorbed P_3S , (d) monolayer Na-adsorbed P_3S , (e) bilayer Na-adsorbed P_3S , (f) monolayer K-adsorbed P_3S , and (g) bilayer K-adsorbed P_3S composite systems [top and side view] (The violet, yellow, green, golden yellow, and purple balls represent P, S, Li, Na, and K atoms, respectively).

Figure S7. Optimized geometries of the (a) monolayer Li-adsorbed C_3S , (b) bilayer Liadsorbed C_3S , (c) monolayer Na-adsorbed C_3S , (d) bilayer Na-adsorbed C_3S , (e) tetralayer Naadsorbed C_3S , (f) monolayer K-adsorbed C_3S , (g) bilayer K-adsorbed C_3S , (h) tetralayer Kadsorbed C_3S , and (g) hexalayer K-adsorbed C_3S composite systems [top and side view] (The brown, yellow, green, golden yellow and purple balls represent C, S, Li, Na, and K atoms, respectively).

Figure S8. (a) Possible diffusion pathway of two K-atoms from one most favored T_{BH} -site to another T_{BH} -site simultaneously in C₃S monolayer and (b) its corresponding energy profile diagram.

Monolayer	Crystal Structure	Lattice Parameters	Bond Lengths
	(Space Group)	(Å, °)	(Å)
P ₃ S	Monoclinic	a = 6.04	P-P: 2.26
	(P2/m)	b = 6.41	2.27
		$\alpha = 91.63$	2.28
		$\beta = 90.04$	P-S: 2.16
		$\gamma = 89.92$	
C ₃ S	Triclinic	a = 4.44	C-C: 1.44
	(P1)	b = 5.63	C-S: 1.78
		$\alpha = 90.23$	
		$\beta = 90.92$	
		$\gamma = 113.23$	

Table S1. Structural information of pristine P_3S and C_3S monolayers.

Table S2. Adsorption energies $({}^{E}ad)$ for the single alkali metal adsorbed P₃S and C₃S monolayers.

Monolayer	Alkali Metal Atom	Adsorption Energy (^E ad) (eV)	Most Favored Site
P ₃ S	Li	$\begin{array}{l} T_{P\text{-S}}: -5.48, \ T_{P\text{-P}}: -5.50, \ T_{P}: -5.28, \ T_{S}: -5.41, \\ T_{hP}: -5.28, \ T_{hPS}: -5.49, \ and \ T_{BH}: -5.52, \end{array}$	T _{BH}
	Na	$\begin{array}{c} T_{P\text{-S}}: -5.52, \ T_{P\text{-P}}: -5.59, \ T_{P}: -5.51, \ T_{S}: -5.46, \\ T_{hP}: -5.53, \ T_{hPS}: -5.55, \ and \ T_{BH}: -5.62 \end{array}$	T _{BH}
	K	$\begin{array}{c} T_{P\text{-S}}:-6.16,\ T_{P\text{-P}}:-6.10,\ T_{P}:-6.08,\ T_{S}:-6.06,\\ T_{hP}:-6.10,\ T_{hPS}:-6.11,\ \text{and}\ T_{BH}:-6.18 \end{array}$	T _{BH}
C ₃ S	Li	$\begin{array}{c} T_{C\text{-S}}:-4.96,T_{C\text{-C}}:-4.82,T_{C}:-4.89,T_{S}:-5.02,\\ T_{h}:-4.88,T_{BH}:-4.94 \end{array}$	T _s
	Na	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T _S
	K	$ \begin{vmatrix} T_{C-S}: -5.27, T_{C-C}: -5.19, T_C: -5.17, T_S: -5.35, \\ T_h: -5.29, T_{BH}: -5.30 \end{vmatrix} $	T _S

Table S3. Charge transfer (Bader charge analysis) from the alkali metals to the monolayers and diffusion barrier of the different pathways for the single alkali metal adsorbed P_3S and C_3S systems.

Monolayer	Alkali Metal Atom	Charge Transfer (Bader Charge Analysis)	Diffusion Barrier (eV)		
		(e)	Path 1 (Green)	Path 2 (Blue)	Path 3 (Red)
P ₃ S	Li	0.86	0.74	0.76	0.77
	Na	0.84	0.26	0.38	0.40
	K	0.87	0.57	1.12	1.27
C ₃ S	Li	0.86	0.68	0.75	-
	Na	0.84	0.30	0.74	-
	K	0.88	0.06	0.08	_

Table S4. Layer-by-layer adsorption energies $({}^{E}ad)$, average open-circuit voltage (OCV), and maximum theoretical capacities (C) of the alkali metal adsorbed P₃S and C₃S systems.

Monolayer	Alkali	Layer-by-layer	Average	Maximum
	Metal	adsorption energies (E_{ad})	Open-Circuit	Theoretical
	Atom	(eV)	Voltage (OCV)	Capacities (C)
			(V)	(mAh/g)
P ₃ S	Li	Monolayer: -2.07	1.38	285.97
		Bilayer: -1.30		
		Trilayer: -1.26		
		Tetralayer: -0.88		
	Na	Monolayer: -1.90	1.80	142.98
		Bilayer: -1.70		
	K	Monolayer: -2.28	2.27	142.98
		Bilayer: -2.26		
C ₃ S	Li	Monolayer: -1.14	0.99	394.26
		Bilayer: -0.83		
	Na	Monolayer: -0.89	0.37	788.53
		Bilayer: -0.31		
		Trilayer: -0.20		
		Tetralayer: -0.08		
	K	Monolayer: -1.16	0.48	1182.79
		Bilayer: -0.85		
		Trilayer: -0.30		
		Tetralayer: -0.28		
		Pentalayer: -0.16		
		Hexalayer: -0.09		

Table S5. Details of volume expansion calculation of alkali metal adsorbed P_3S and C_3S systems at their maximum adsorbed geometries.

Monolayer	Alkali Metal Atom	Maximum Adsorbed Geometry	Old Volume (Å ³)	New Volume (Å ³)	Volume expansion (%)
P ₃ S	Li	Tetralayer	6976.424	7235.892	0.037
	Na	Bilayer	6976.424	9281.76	0.33
	K	Bilayer	6976.424	9842.94	0.41
C ₃ S	Li	Bilayer	4510.872	4624.48	0.025
	Na	Tetralayer	4510.872	4530.288	0.004
	K	Hexalayer	4510.872	4537.937	0.006