Supporting Information for:

Theoretical study on the activity and selectivity of IDO / TDO inhibitors

Baerlike Wujieti, Xinping Feng, Erxia Liu, Deqing Li, Mingtian Hao, Luqi Zhou, Wei Cui*

School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road,

Beijing 100049, China.

*Corresponding author

Email address: cuiwei@ucas.ac.cn

Contents

Figure S1: Identical (A) and different (B) residues at topologically equivalent sites
of IDO and TDO4
Figure S2: Structure and activity data for various inhibitors
Figure S3: Docking conformations of various inhibitors with IDO and TDO6
Figure S4: Alignment of the predicted complex structure of IDO and their co-
crystal structure7
Figure S5: The RMSD value of the trajectory of each enzyme-inhibitor complex8
Figure S6: The EPtot of the trajectory of each enzyme-inhibitor complex9
Figure S7: The RMSF value of the residue's Ca atom of each IDO-inhibitor
complex10
Figure S8: The RMSF value of the residue's Ca atom of each TDO-inhibitor
complex12
Figure S9: Frequency distribution of the iron-coordinating distance for each
enzyme-inhibitor complex13
Figure S10: Binding conformations of various inhibitors and two enzymes with the
lowest potential energy in stable segment trajectory
Figure S11: The direction of motion of JKloops of two enzymes along the
eigenvectors of the first two principal components (PC1 and PC2)16
Figure S12: The representative conformations of Trp- and C1 inhibitor-bound
IDO/TDO17

Figure S13: Molecular tunnel scanning results of IDO and TDO.18

Table S1: The volume and surface area of the active pockets of IDO and TDO....19

Table S2: Hydrogen bond analysis of each IDO- and TDO-inhibitor complex.21

- Table S4: The binding free energies of the inhibitor with each representative conformation of IDO/TDO, the volume and surface area of the IDO/TDO active pocket, and the solvent-accessible surface area (SASA) of the inhibitor.

Table S5: The size and bottleneck of each molecular tunnel of IDO and TDO.26

- Table S6: Information on the charge and GAFF force field atom types of the inhibitor, porphyrin ring, histidine, and central iron atoms of the metal coordination structure in the C1 inhibitor-IDO complex......27

Figure S1: Identical (A) and different (B) residues at topologically equivalent sites of IDO and TDO. In Figures (A) and (B), IDO and its residues at the active site are shown as the red Cartoon model and the red line model, TDO and its residues at the active site are shown as the blue Cartoon model and the blue line model.

Figure S2: Structure and activity data for various inhibitors. Inhibitors marked with"*"haveaco-crystalstructurewithIDO.

Figure S3: Docking conformations of various inhibitors with IDO and TDO. Thepredicted binding models of the inhibitor to IDO and TDO are shown by the red stickmodelandthebluestickmodel,respectively.

Figure S4: Alignment of the predicted complex structure of IDO and their co-crystal structure. The RMSD values between the IDO-predicted complex structure and the co-crystal structure are labeled in the figure. The white stick and cartoon models show the co-crystal structure, while the red sticks show the corresponding predicted complex structures.

Figure S5: The RMSD value of the trajectory of each enzyme-inhibitor complex withrespecttothefirstframe.

Figure S6: The EPtot of the trajectory of each enzyme-inhibitor complex.

Figure S7: The RMSF value of the residue's Ca atom of each IDO-inhibitor complex. To determine the flexibility of the secondary structural segments of two enzymes, we calculated the RMSF value of each residue (C α atom) (The calculation results of the

RMSF value of TDO complex are shown in Supplemental Figures S8). More structural fluctuation and high flexibility were found at the JKloop of IDO complex and the α H1 $\sim\alpha$ H2 of TDO complex. In contrast, the JKloop of most TDO complexes has less structural fluctuation and flexibility. Snapshots of complex trajectories show that whether the initial structure is closed or open, the JKloop in most IDO trajectories will eventually switch to the open state, while the JKloop of most TDO complexes remains stable in the closed state. Although the β -turn that maintains the closed conformation of JKloop is disrupted in some larger inhibitor complexes, the JKloop of TDO can still interact with the inhibitor to remain stable. Therefore, the JKloop of TDO has less structural fluctuation and flexibility. In addition, the α H1 $\sim\alpha$ H2 is only present in TDO but not in IDO, and its structural fluctuations only reflect the relative subunits motion between the four of TDO.

Figure S8: The RMSF value of the residue's Ca atom of each TDO-inhibitor complex.

Figure S9: Frequency distribution of the iron-coordinating distance for each enzymeinhibitor complex. To evaluate the differences in inhibitor coordination between two enzymes, we calculated the frequency distribution of inhibitor coordination distances based on the 80-100 ns MD trajectory of each complex. The coordination distances of most inhibitors in two enzymes converged between 1.85 and 2.29 Å. For the A, C, and

E series inhibitors, the difference in the coordination distances between the two enzymes was no more than 0.04 Å. Considering that the difference in bond length from 0 to 0.04 Å was very small for molecular dynamics simulations, it could be assumed that these three series inhibitors form coordination bonds with the same strength at the active sites of two enzymes. For most inhibitors of B, D, and G series, the difference in the coordination distances between two enzymes was between 0.04 and 0.10 Å, suggesting that these three series inhibitors would form coordination bonds of different strengths at the active sites of two enzymes: B series inhibitors and G series inhibitors substituted by the 8-position F atom (G3 and G4) had stronger coordination bonds in TDO; D series inhibitors and G1 inhibitor without 8-F atom substitution had coordination bonds IDO. stronger in

Figure S10: Binding conformations of various inhibitors and two enzymes with the lowest potential energy in stable segment trajectory. The residues of IDO (Red) and TDO (Blue) both contribute less than -0.60 kcal/mol to the binding free energy.

Figure S11: The direction of motion of JKloops of two enzymes along the eigenvectors of the first two principal components (PC1 and PC2). In Figures (A) and (B), IDO and TDO are shown as red cartoon models and blue cartoon models, respectively.

Figure S12: The representative conformations of Trp- and C1 inhibitor-bound IDO/TDO.

Figure S13: Molecular tunnel scanning results of IDO and TDO. In Figures (A) and (B), IDO and TDO are shown as red cartoon models and blue cartoon models, respectively. Molecular tunnels are sorted by orientation and displayed in different colors. The size and bottleneck of each molecular tunnel are shown in Supplementary Table 5.

Table S1: The volume and surface area of the active pockets of IDO and TDO. To evaluate the effect of the inhibitors binding on the structure of the active pockets, as well as the flexibility of the active pockets, we measured the volume and surface area of the pockets of the two enzymes using the POVME 2.0 program based on the snapshots of proteins extracted from 80-100 ns MD trajectory of each enzymeinhibitor complex. When the two enzymes bind to the substrate tryptophan, the volume of the active pockets of IDO and TDO are 123.58 Å³ and 86.45 Å³, while the surface area are 95.91Å² and 74.26 Å², respectively. When the two enzymes bound to the inhibitors, the average volume of the IDO's and TDO's active pocket increased to 169.83 Å³ and 139.67 Å³, while the average surface area increased to 105.11 Å² and 94.13 Å². This result implicated that compared with the substrate, the shape and size of the active pockets of both enzymes changed due to conformational rearrangement induced by the inhibitors. Most inhibitors induced an increase in the volume and surface of active pockets, and the active pocket of IDO was always larger than TDO. The active pockets of both enzymes are highly flexible, allowing them to accommodate a wide range of inhibitors.

Substants / Inhihitana	П	00	TDO		
	VOLUME(Å ³) SURFACE (Å		VOLUME(Å ³)	SURFACE (Å ²)	
Тгр	123.58	95.91	86.45	74.26	
A1	156.77	101.85	99.18	81.21	
A2	69.93	67.24	92.34	79.88	
A3	123.60	89.26	83.19	64.50	
A4	156.02	99.84	84.38	69.00	
A5	183.04	100.93	153.48	87.48	
B1	122.30	80.88	161.72	115.54	
B2	240.62	136.37	182.82	121.35	

B3	154.82	106.70	174.79	106.07
C1	180.18	107.25	144.52	91.43
C2	205.24	115.93	151.08	91.50
C3	176.45	103.34	205.51	115.03
C4	176.90	104.67	136.43	85.53
C5	165.68	105.06	160.04	86.25
D1	195.68	119.53	109.34	81.34
D2	151.27	110.13	178.81	109.25
D3	203.63	122.60	81.86	64.97
E1	85.23	68.88	67.36	62.64
F1	162.94	104.19	150.93	97.31
G1	188.85	111.94	155.16	94.59
G2	171.62	101.14	131.54	86.54
G3	190.59	105.25	135.09	101.87
G4	176.32	102.03	168.05	124.90
H1	179.17	105.38	236.88	136.35
Average (A~H)	169.83	105.11	139.67	94.13

Note that the average values in the last row of the table are only the average measurements for A \sim H series of inhibitors, excluding the substrate.

IDO-inhibitor complex								
Acceptor	Donor-H	Donor	Frac	AvgDist	AvgAng			
HEM@O2A	C1_Inhibitor@H10	C1_Inhibitor@O1	0.86	2.63	166.13			
GLY_262@O	A2_Inhibitor@H20	A2_Inhibitor@O7	0.86	2.69	156.23			
F1_Inhibitor@O19	ALA_264@H	ALA_264@N	0.82	2.85	160.85			
A5_Inhibitor@O2	ARG_231@HE	ARG_231@NE	0.71	2.83	154.84			
HEM@O2A	B3_Inhibitor@H9	B3_Inhibitor@N3	0.63	2.84	154.18			
GLY_262@O	B1_Inhibitor@H11	B1_Inhibitor@N4	0.60	2.85	156.09			
HEM@O2A	B3_Inhibitor@H10	B3_Inhibitor@N4	0.51	2.86	154.84			
HEM@O2A	C5_Inhibitor@H3	C5_Inhibitor@O1	0.51	2.75	161.62			
H1_Inhibitor@O1	SER_167@HG	SER_167@OG	0.36	2.81	157.45			
A5_Inhibitor@O2	ARG_231@HH21	ARG_231@NH2	0.33	2.85	147.71			
HEM_393@O1A	F1_Inhibitor@H24	F1_Inhibitor@N23	0.31	2.85	157.44			
HEM_393@O2A	F1_Inhibitor@H24	F1_Inhibitor@N23	0.31	2.85	157.34			
D2_Inhibitor@O23	GLY_236@H	GLY_236@N	0.26	2.88	160.46			
GLY_262@O	E1_Inhibito@H	E1_Inhibitor@N3	0.25	2.85	163.96			
ARG_231@O	C5_Inhibitor@H31	C5_Inhibitor@O29	0.25	2.80	158.10			
HEM@O1A	B3_Inhibitor@H9	B3_Inhibitor@N3	0.19	2.83	153.82			
HEM@O1A	C5_Inhibitor@H3	C5_Inhibitor@O1	0.18	2.77	162.28			
HEM@O1A	B3_Inhibitor@H10	B3_Inhibitor@N4	0.15	2.86	153.97			
HEM@O1A	C1_Inhibitor@H10	C1_Inhibitor@O1	0.13	2.65	164.90			
HEM@O2A	D2_Inhibitor@H21	D2_Inhibitor@N21	0.12	2.84	156.80			
HEM@O1A	B2_Inhibitor@H18	B2_Inhibitor@N18	0.12	2.88	147.92			
H1_Inhibitor@N5	SER_235@HG	SER_235@OG	0.10	2.86	160.96			
D2_Inhibitor@O12	ALA_264@H	ALA_264@N	0.10	2.94	147.8679			
		TDO-inhibitor comple	X					
Acceptor	Donor-H	Donor	Frac	AvgDist	AvgAng			
HEM@O2A	C1_Inhibitor@H10	C1_Inhibitor@O1	0.97	2.66	160.01			
HEM@O2A	D1_Inhibitor@H1	D1_Inhibitor@N3	0.84	2.84	162.54			
THR_342@OG1	A2_Inhibitor@H20	A2_Inhibitor@O7	0.72	2.82	159.90			
H1_Inhibitor@O3	ARG_144@HE	ARG_144@NE	0.66	2.84	151.53			
HEM@O1A	C5_Inhibitor@H3	C5_Inhibitor@O1	0.60	2.74	159.52			
THR_342@OG1	A1_Inhibitor@HN1	A1_Inhibitor@N1	0.54	2.89	159.54			
A5_Inhibitor@O2	ARG_144@HH21	ARG_144@NH2	0.51	2.85	155.54			
HEM@O2A	C5_Inhibitor@H3	C5_Inhibitor@O1	0.28	2.80	161.65			
THR_342@OG1	A3_Inhibitor@H17	A3_Inhibitor@N11	0.26	2.89	150.51			
C5_Inhibitor@O29	ARG_144@HH21	ARG_144@NH2	0.26	2.86	149.32			
ALA_150@O	B1_Inhibitor@H11	B1_Inhibitor@N4	0.18	2.85	146.75			
D3_Inhibitor@O27	GLY_152@H	GLY_152@N	0.12	2.93	153.97			
D3_Inhibitor@N4	GLY_152@H	GLY_152@N	0.11	2.93	145.94			

Table S2: Hydrogen bond analysis of each IDO- and TDO-inhibitor complex.

B3_Inhibitor@N5	LYS_339@HZ3	LYS_339@NZ	0.10	2.90	154.27
THR_342@OG1	B3_Inhibitor@H10	B3_Inhibitor@N4	0.10	2.91	146.18
B1_Inhibitor@O2	SER_148@HG	SER_148@OG	0.10	2.80	156.87
B1_Inhibitor@O1	ARG_144@HE	ARG_144@NE	0.10	2.88	157.31
D3_Inhibitor@N19	THR_342@HG1	THR_342@OG1	0.10	2.88	158.19

Turn hound IDO (Casta \mathcal{C} and \mathcal{L})								
	ırp			Yalut -1.0 A)				
	Frac	AvgDist	Stdev	Structural characteristics				
1	32./U%	3.949	1.437	Open I				
2	13.70%	1.234	0.932	Close				
3	9.10%	1.252	0.412	Open II				
4	8.10%	1.834	0.680	Open III				
5	6.90%	1.458	0.736	Open IV				
6	6.70%	1.440	0.424	Open V				
7	6.00%	1.847	0.581	Open VI				
8	2.50%	1.073	0.497	-				
9	2.40%	0.732	0.211	-				
10	2.00%	1.495	0.580	-				
11	1.50%	1.690	0.586	-				
12	1.20%	0.984	0.363	-				
13	1.10%	2.096	0.740	-				
14	0.70%	2.020	0.801	-				
15	0.50%	0.802	0.414	-				
16	0.50%	1.585	0.717	-				
17	0.40%	1.060	0.319	-				
18	0.30%	1.431	0.640	-				
19	0.20%	1.178	0.559	-				
20	0.20%	0.699	0.178	-				
21	0.20%	1.568	0.565	-				
22	0.20%	1.183	0.466	-				
23	0.20%	1.417	0.492	-				
24	0.10%	1.522	0.517	-				
25	0.10%	1.469	0.422	-				
26	0.10%	1.048	0.326	-				
27	0.10%	1.016	0.512	-				
	Inhibi	tor-bound II	DO (Cuto	ff value =1.6 Å)				
Cluster	Frac	AvgDist	Stdev	Structural characteristics				
1	29.10%	3.525	1.495	Open I				
2	12.90%	1.527	0.635	Open II				
3	11.40%	0.873	0.298	Open III				
4	10.80%	1.707	0.842	Open IV				
5	9.30%	1.210	0.561	Close				
6	7.60%	1.712	0.768	Open V				
7	3.50%	2.480	0.979	Open VI				

Table S3: Cluster analysis results of T-REMD simulation trajectories (T=300.5K) of Trp-bound and inhibitor-bound IDO/TDO.

8	2.20%	1.262	0.523	-
9	2.20%	1.710	0.763	-
10	1.70%	1.548	0.639	-
11	1.20%	1.403	0.546	-
12	1.10%	1.260	0.442	-
13	1.00%	1.710	0.633	-
14	1.00%	1.327	0.569	-
15	0.70%	1.194	0.407	-
16	0.50%	1.632	0.622	-
17	0.30%	1.463	0.507	-
18	0.30%	0.831	0.244	-
19	0.30%	1.663	0.523	-
20	0.20%	1.033	0.694	-
21	0.20%	1.180	0.350	-
22	0.20%	1.526	0.449	-
23	0.20%	1.634	0.473	-
	Trp	-bound TDC) (Cutoff v	value =0.5 Å)
Cluster	Frac	AvgDist	Stdev	Structural characteristics
1	96.50%	0.346	0.064	Close
2	3.00%	0.593	0.180	Open
3	0.20%	0.506	0.120	-
4	0.10%	0.515	0.111	-
	Inhibit	tor-bound T	DO (Cuto	ff value =0.5 Å)
Cluster	Frac	AvgDist	Stdev	Structural characteristics
1	56.60%	0.619	0.286	Close
2	14.60%	0.607	0.189	Open I
3	8.10%	0.705	0.176	Open II
4	4.80%	0.460	0.106	Open III
5	4.70%	0.743	0.223	Open IV
6	3.20%	0.546	0.146	Open V
7	1.40%	0.736	0.199	-
8	1.20%	0.714	0.180	-
9	0.90%	0.548	0.156	-
10	0.40%	0.432	0.087	-
11	0.30%	0.595	0.123	-
12	0.30%	0.587	0.148	-
13	0.20%	0.564	0.130	-
14	0.20%	0.472	0.089	-
15	0.20%	0.572	0.122	
16	0.20%	0.577	0.108	-
17	0.10%	0.520	0.110	-
18	0.10%	0.460	0.104	-
10	0 100/	0 494	0 104	_
1)	0.10%	0.404	0.104	-

Table S4: The binding free energies of the inhibitor with each representative conformation of IDO/TDO, the volume and surface area of the IDO/TDO active pocket, and the solvent-accessible surface area (SASA) of the inhibitor.

IDO	MM/GBSA (kcal/mol)	VOLUME (Å ³)	SURFACE (Å ²)	SASA (Ų)
Close	-49.12	164.09	174.59	36.64
Open I	-44.80	197.94	194.90	54.40
Open II	-43.59	200.89	205.19	56.86
Open III	-45.11	201.47	214.36	52.90
Open IV	-46.65	189.16	189.13	20.20
Open V	-42.25	186.08	181.49	55.41
Open VI	-45.06	199.34	197.40	44.12
TDO	MM/GBSA (kcal/mol)	VOLUME (Å ³)	SURFACE (Å ²)	SASA (Å ²)
Close	-48.02	150.42	152.73	26.79
Open I	-36.76	267.69	200.18	70.24
Open II	-46.01	175.61	177.85	30.88
Open III	-45.23	196.59	186.07	30.29
Open IV	-42.10	247.23	213.79	61.76
Open V	-47.65	155.50	166.93	28.91

IDO	ID	Avg_BR (Å)	Max_BR (Å)	Avg_L (Å)
	Tunnel 1	2.68	3.11	13.03
Open I	Tunnel 2	1.97	2.91	18.50
	Tunnel 4	1.58	2.32	18.82
	Tunnel 1	2.54	2.93	15.22
Open II	Tunnel 4	1.37	2.06	21.86
	Tunnel 5	1.25	1.69	22.99
	Tunnel 4	1.76	2.40	18.39
Open III	Tunnel 5	1.45	2.13	18.49
	Tunnel 3	1.21	1.55	27.42
Open IV	Tunnel 4	1.68	2.15	16.44
	Tunnel 2	2.56	3.12	21.76
Open V	Tunnel 1	2.26	2.97	12.95
	Tunnel 3	2.21	2.88	22.64
	Tunnel 1	2.33	2.80	16.03
Open VI	Tunnel 2	2.00	2.51	24.81
	Tunnel 5	1.72	2.58	20.46
CI	Tunnel 3	2.10	2.77	18.88
Close	Tunnel 2	1.94	2.61	18.34
TDO	ID	Avg_BR(Å)	Max_BR(Å)	Avg_L(Å)
0 1	Tunnel 1	2.43	3.12	10.36
Open I	Tunnel 2	1.83	2.66	25.91
Open II	Tunnel 2	1.35	1.80	22.50
0	Tunnel 1	1.87	2.78	16.68
Open II Open III	Tunnel 2	2.01	2.64	24.39
0 W	Tunnel 1	2.18	3.07	16.88
Open IV	Tunnel 2	2.00	2.56	25.55
0 17	Tunnel 1	2.18	2.78	10.63
Open VI	Tunnel 2	2.12	2.74	18.26
	Tunnel 2	1.59	2.27	23.18
Close	Tunnel 1	1.40	2.17	18.14

Table S5: The size and bottleneck of each molecular tunnel of IDO and TDO.Molecular tunnels in different directions are marked with different colors.

Table S6: Information on the charge and GAFF force field atom types of the inhibitor, porphyrin ring, histidine, and central iron atoms of the metal coordination structure in the C1 inhibitor-IDO complex. In Table, M1 represents the atom type of the ferrous ion, while Y1, Y2, Y3, Y4, Y5, and Y6 denote the atom types of the six atoms bound to the ferrous ion. Y1 is the ε-nitrogen atom in HID346 (δ-nitrogen protonated histidine at 346 of the residue sequence), Y2~Y5 are the four nitrogen atoms in the porphyrin ring coplanar, and Y6 is the electronegative atom of the inhibitor. For other atom types see gaff.dat ("general Amber force field").

Cha	arge and atom t	ype informatio	on for C	l inhibitor	Char	ge and atom typ	pe information	for the j	porphyrin ring
No.	Atom name	Atom type	Unit	Charge	No.	Atom name	Atom type	Unit	Charge
1	C1	сс	ML1	-0.14919	1	CHA	ce	HM1	-0.02716
2	H1	h4	ML1	0.143961	2	C4D	cc	HM1	-0.01958
3	N1	Y6	ML1	-0.03073	3	ND	Y2	HM1	-0.06948
4	C2	cd	ML1	0.033569	4	C1D	cd	HM1	-0.07517
5	H2	h5	ML1	0.128227	5	C2D	cd	HM1	0.033427
6	N2	na	ML1	0.057571	6	CMD	c3	HM1	-0.04803
7	C3	cd	ML1	-0.00591	7	C3D	cc	HM1	-0.04739
8	C4	ca	ML1	0.015242	8	CAD	c3	HM1	-0.04853
9	C5	ca	ML1	-0.13504	9	CBD	c3	HM1	0.024453
10	H3	ha	ML1	0.117286	10	CGD	с	HM1	0.621962
11	C6	ca	ML1	-0.21553	11	O2D	0	HM1	-0.72155
12	H4	ha	ML1	0.132422	12	O1D	0	HM1	-0.72362
13	C7	ca	ML1	-0.15278	13	CHD	ce	HM1	-0.079
14	Н5	ha	ML1	0.115806	14	C4C	cc	HM1	-0.02373
15	C8	ca	ML1	0.094165	15	NC	Y3	HM1	-0.15727
16	F1	f	ML1	-0.15173	16	C1C	cd	HM1	-0.05093
17	С9	ca	ML1	0.043792	17	C2C	cd	HM1	0.020148
18	C10	c3	ML1	0.04287	18	CMC	c3	HM1	-0.0489
19	H6	h1	ML1	0.101823	19	C3C	cc	HM1	-0.03426
20	C11	c3	ML1	-0.02622	20	CAC	ce	HM1	-0.12363
21	H7	hc	ML1	0.035886	21	CBC	c2	HM1	-0.33989
22	H8	hc	ML1	0.035886	22	CHC	ce	HM1	-0.12349
23	C12	c3	ML1	-0.00522	23	C4B	cc	HM1	-0.03297
24	H9	h1	ML1	0.067972	24	NB	Y4	HM1	-0.03576
25	01	oh	ML1	-0.45383	25	C1B	cd	HM1	-0.0304
26	H10	ho	ML1	0.44652	26	C2B	cd	HM1	0.088097

HM1 -0.05242
HM1 -0.03575
HM1 -0.08814
HM1 -0.40235
HM1 -0.12595
HM1 -0.10764
HM1 -0.06977
HM1 0.003192
HM1 -0.04401
HM1 -0.06975
HM1 -0.04464
HM1 0.653694
HM1 -0.74451
HM1 -0.70439
HM1 -0.01079
HM1 -0.0656
HM1 0.025109
HM1 0.025109
HM1 0.025109
HM1 0.016713
HM1 0.016713
HM1 0.016713
HM1 0.012469
HM1 0.012469
HM1 0.012469
HM1 0.022149
HM1 0.022149
HM1 0.022149
HM1 0.136697
HM1 0.136697
HM1 0.128085
HM1 0.128085
HM1 -0.00583
HM1 -0.00583
HM1 0.031992
HM1 0.031992
HM1 -0.03804
HM1 -0.03804
HM1 0.029354
HM1 0.029354
HM1 0.145931
HM1 0.167192
HM1 0.128582
HM1 0.116844

71	HAB	ha	HM1	0.120351
 72	HAC	ha	HM1	0.130322

		MA	ASS				
Atom type	Mass						
M1	55.85		Fe ion				
Y1	14.01	0.53	sp2 N in 5 memb.ring w/LP (HIS,ADE,GUA)				
Y2	14.01	0.53	Sp2 N in non-pure aromatic systems, identical to nc				
Y3	14.01	0.53	Sp2 N in non-pure aromatic systems, identical to nc				
Y4	14.01	0.53	Sp2 N in non-pure aromatic systems, identical to nc				
Y5	14.01	0.53	Sp2 N in non-pure aromatic systems, identical to nc				
Y6	14.01	0.53	Sp2 N in non-pure aromatic systems				
		BO	ND				
	The force	The equilibrium					
The definition	constant k_b	bond length r ₀					
	(kcal/mol/Å ²)	(Å)					
M1-Y6	64.8	2.0429	Created by Seminario method using MCPB.py				
Y1-M1	26.3	2.0519	Created by Seminario method using MCPB.py				
Y2-M1	50.6	2.0163	Created by Seminario method using MCPB.py				
Y3-M1	70.6	2.0165	Created by Seminario method using MCPB.py				
Y4-M1	32.1	2.0123	Created by Seminario method using MCPB.py				
Y5-M1	67.2	2.0012	Created by Seminario method using MCPB.py				
CR-Y1	488	1.335	JCC,7,(1986),230; HIS				
Y1-CV	410	1.394	JCC,7,(1986),230; HIS				
Y2-cd	441.1	1.3694	SOURCE1_SOURCE5 2269				
Y3-cd	441.1	1.3694	SOURCE1_SOURCE5 2269				
Y4-cd	441.1	1.3694	SOURCE1_SOURCE5 2269				
Y5-cd	441.1	1.3694	SOURCE1_SOURCE5 2269				
Y6-cd	525.4	1.3172	SOURCE3_SOURCE5 4612				
cc-Y2	525.4	1.3172	SOURCE3_SOURCE5 4612				
cc-Y3	525.4	1.3172	SOURCE3_SOURCE5 4612				
cc-Y4	525.4	1.3172	SOURCE3_SOURCE5 4612				
cc-Y5	525.4	1.3172	SOURCE3_SOURCE5 4612				
cc-Y6	441.1	1.3694	SOURCE1_SOURCE5 2269				
		AN	IGL				
	The force	The equilibrium					
The definition	constant k_{θ}	angle value θ_0					
	(kcal/mol/radian ²)	(degrees)					
CR-Y1-M1	117.53	120.95	Created by Seminario method using MCPB.py				
M1-Y1-CV	118.12	129.42	Created by Seminario method using MCPB.py				
M1-Y2-cd	142.33	125.86	Created by Seminario method using MCPB.py				
M1-Y3-cd	156.56	126.64	Created by Seminario method using MCPB.py				
M1-Y4-cd	101.57	126.74	Created by Seminario method using MCPB.pv				

Table S7: Bond, angle and dihedral angle parameters of metal coordination structures

in the C1 inhibitor-IDO complex.

MI-Y5-cd 158.94 126.82 Created by Seminario method using M MI-Y6-cc 117.49 125.41 Created by Seminario method using M MI-Y6-cd 116.27 126.93 Created by Seminario method using M Y1-M1-Y2 142.7 84.63 Created by Seminario method using M Y1-M1-Y3 126.24 90.41 Created by Seminario method using M Y1-M1-Y4 124.43 92.48 Created by Seminario method using M Y1-M1-Y5 118.29 92.09 Created by Seminario method using M Y2-M1-Y3 125.01 89.71 Created by Seminario method using M Y2-M1-Y4 119.82 177.11 Created by Seminario method using M Y2-M1-Y5 114.18 89.76 Created by Seminario method using M Y3-M1-Y4 160.84 90.37 Created by Seminario method using M Y3-M1-Y4 126.74 90.47 Created by Seminario method using M Y4-M1-Y5 123.28 177.38 Created by Seminario method using M Y4-M1-Y6 127.75 92.52 Created by Seminario method using M Y								
MI-Y6-cc117.49125.41Created by Seminario method using MMI-Y6-cd116.27126.93Created by Seminario method using MY1-M1-Y2142.784.63Created by Seminario method using MY1-M1-Y3126.2490.41Created by Seminario method using MY1-M1-Y4124.4392.48Created by Seminario method using MY1-M1-Y5118.2992.09Created by Seminario method using MY2-M1-Y3125.0189.71Created by Seminario method using MY2-M1-Y4119.82177.11Created by Seminario method using MY2-M1-Y5114.1889.76Created by Seminario method using MY2-M1-Y6145.390.37Created by Seminario method using MY2-M1-Y6126.7490.47Created by Seminario method using MY3-M1-Y6126.7490.47Created by Seminario method using MY4-M1-Y5144.9990.48Created by Seminario method using MY4-M1-Y6127.7592.52Created by Seminario method using MY4-M1-Y6127.7592.52Created by Seminario method using Mce-Y3-M1159.75127.24Created by Seminario method using Mce-Y3-M1159.75127.24Created by Seminario method using Mce-Y4-M1100.26127.38Created by Seminario method using Mce-Y5-M1120AA hisY1-CV-T470120AA hisY1-CV-H450120AA hisY2-dece68.67123.98SOURCE5	M1-Y5-cd	158.94	126.82	Created by Seminario method using MCPB.py				
MI-Y6-cd116.27126.93Created by Seminario method using MY1-M1-Y2142.784.63Created by Seminario method using MY1-M1-Y3126.2490.41Created by Seminario method using MY1-M1-Y4124.4392.48Created by Seminario method using MY1-M1-Y5118.2992.09Created by Seminario method using MY1-M1-Y6161.24174.93Created by Seminario method using MY2-M1-Y3125.0189.71Created by Seminario method using MY2-M1-Y5114.1889.76Created by Seminario method using MY2-M1-Y5114.1889.76Created by Seminario method using MY2-M1-Y6145.390.37Created by Seminario method using MY3-M1-Y6126.7490.47Created by Seminario method using MY3-M1-Y6127.7592.52Created by Seminario method using MY4-M1-Y6127.7592.52Created by Seminario method using MY4-M1-Y6127.7592.52Created by Seminario method using Mce-Y2-M1142.49126.19Created by Seminario method using Mce-Y2-M1150.75127.24Created by Seminario method using Mce-Y3-M1156.89126.66Created by Seminario method using Mce-Y4-M1100.26127.38Created by Seminario method using Mce-Y5-M1156.89120AA hisY1-CV-H450120AA hisY1-CV-H450120AA hisY2-ed-ec68.67123.98S	M1-Y6-cc	117.49	125.41	Created by Seminario method using MCPB.py				
Y1-M1-Y2 142.7 84.63 Created by Seminario method using M Y1-M1-Y3 126.24 90.41 Created by Seminario method using M Y1-M1-Y4 124.43 92.49 Created by Seminario method using M Y1-M1-Y5 118.29 92.09 Created by Seminario method using M Y2-M1-Y3 125.01 89.71 Created by Seminario method using M Y2-M1-Y4 119.82 177.11 Created by Seminario method using M Y2-M1-Y5 114.18 89.76 Created by Seminario method using M Y3-M1-Y4 160.84 90.18 Created by Seminario method using M Y3-M1-Y5 123.28 177.38 Created by Seminario method using M Y3-M1-Y6 126.74 90.47 Created by Seminario method using M Y4-M1-Y6 127.75 92.52 Created by Seminario method using M Y4-M1-Y6 127.15 86.97 Created by Seminario method using M ce-Y2-M1 142.49 126.19 Created by Seminario method using M ce-Y3-M1 159.75 127.24 Created by Seminario method using M CC-C-Y1 70 120 AA his	M1-Y6-cd	116.27	126.93	Created by Seminario method using MCPB.py				
Y1-M1-Y3126.2490.41Created by Seminario method using NY1-M1-Y4124.4392.48Created by Seminario method using NY1-M1-Y5118.2992.09Created by Seminario method using NY1-M1-Y6161.24174.93Created by Seminario method using NY2-M1-Y3125.0189.71Created by Seminario method using NY2-M1-Y4119.82177.11Created by Seminario method using NY2-M1-Y5114.1889.76Created by Seminario method using NY2-M1-Y6145.390.37Created by Seminario method using NY3-M1-Y4160.8490.18Created by Seminario method using NY3-M1-Y5123.28177.38Created by Seminario method using NY3-M1-Y6126.7490.47Created by Seminario method using NY4-M1-Y5144.9990.48Created by Seminario method using NY5-M1-Y6127.1586.97Created by Seminario method using Nce-Y2-M1142.49126.19Created by Seminario method using Nce-Y3-M1159.75127.24Created by Seminario method using Nce-Y4-M1100.26127.38Created by Seminario method using NCC-CV-Y170120AA hisV1-CR-H550120AA hisY1-CR-H550120AA hisY1-CV-H450120AA hisY1-CV-H450120AA hisY1-CV-H450120AA hisY1-CV-H450120AA his	Y1-M1-Y2	142.7	84.63	Created by Seminario method using MCPB.py				
Y1-M1-Y4 124.43 92.48 Created by Seminario method using M Y1-M1-Y5 118.29 92.09 Created by Seminario method using M Y2-M1-Y3 125.01 89.71 Created by Seminario method using M Y2-M1-Y4 119.82 177.11 Created by Seminario method using M Y2-M1-Y5 114.18 89.76 Created by Seminario method using M Y2-M1-Y6 145.3 90.37 Created by Seminario method using M Y3-M1-Y6 145.3 90.37 Created by Seminario method using M Y3-M1-Y6 126.74 90.47 Created by Seminario method using M Y4-M1-Y6 126.74 90.47 Created by Seminario method using M Y4-M1-Y6 127.75 92.52 Created by Seminario method using M Y4-M1-Y6 127.15 86.97 Created by Seminario method using M ce-Y2-M1 142.49 126.19 Created by Seminario method using M ce-Y3-M1 159.75 127.24 Created by Seminario method using M ce-Y4-M1 100.26 127.38 Created by Seminario method using M	Y1-M1-Y3	126.24	90.41	Created by Seminario method using MCPB.py				
Y1-M1-Y5 118.29 92.09 Created by Seminario method using M Y1-M1-Y6 161.24 174.93 Created by Seminario method using M Y2-M1-Y3 125.01 89.71 Created by Seminario method using M Y2-M1-Y4 119.82 177.11 Created by Seminario method using M Y2-M1-Y5 114.18 89.76 Created by Seminario method using M Y2-M1-Y6 145.3 90.37 Created by Seminario method using M Y3-M1-Y6 126.74 90.47 Created by Seminario method using M Y3-M1-Y6 126.74 90.47 Created by Seminario method using M Y4-M1-Y6 127.75 92.52 Created by Seminario method using M Y4-M1-Y6 127.15 86.97 Created by Seminario method using M ce-Y2-M1 142.49 126.19 Created by Seminario method using M ce-Y3-M1 159.75 127.24 Created by Seminario method using M ce-Y4-M1 100.26 127.38 Created by Seminario method using M ce-Y5-M1 156.89 126.86 Created by Seminario method using M N	Y1-M1-Y4	124.43	92.48	Created by Seminario method using MCPB.py				
Y1-M1-Y6 161.24 174.93 Created by Seminario method using N Y2-M1-Y3 125.01 89.71 Created by Seminario method using N Y2-M1-Y4 119.82 177.11 Created by Seminario method using N Y2-M1-Y5 114.18 89.76 Created by Seminario method using N Y2-M1-Y6 145.3 90.37 Created by Seminario method using N Y3-M1-Y4 160.84 90.18 Created by Seminario method using N Y3-M1-Y5 123.28 177.38 Created by Seminario method using N Y4-M1-Y6 126.74 90.47 Created by Seminario method using N Y4-M1-Y6 127.75 92.52 Created by Seminario method using N y5-M1-Y6 127.15 86.97 Created by Seminario method using N cc-Y2-M1 142.49 126.19 Created by Seminario method using N cc-Y3-M1 159.75 127.24 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N CC-CV-Y1 70 120 AA his Y1-CV-H4 <	Y1-M1-Y5	118.29	92.09	Created by Seminario method using MCPB.py				
Y2-M1-Y3 125.01 89.71 Created by Seminario method using M Y2-M1-Y4 119.82 177.11 Created by Seminario method using M Y2-M1-Y5 114.18 89.76 Created by Seminario method using M Y3-M1-Y5 145.3 90.37 Created by Seminario method using M Y3-M1-Y5 123.28 177.38 Created by Seminario method using M Y3-M1-Y5 123.28 177.38 Created by Seminario method using M Y4-M1-Y5 124.99 90.48 Created by Seminario method using M Y4-M1-Y6 127.75 92.52 Created by Seminario method using M v5-M1-Y6 127.15 86.97 Created by Seminario method using M cc-Y2-M1 142.49 126.19 Created by Seminario method using M cc-Y3-M1 159.75 127.24 Created by Seminario method using M cc-Y4-M1 100.26 127.38 Created by Seminario method using M cc-Y4-M1 100.26 127.38 Created by Seminario method using M cc-Y4-M1 100.26 127.38 Created by Seminario method using M <tr< td=""><td>Y1-M1-Y6</td><td>161.24</td><td>174.93</td><td>Created by Seminario method using MCPB.py</td></tr<>	Y1-M1-Y6	161.24	174.93	Created by Seminario method using MCPB.py				
Y2-MI-Y4 119.82 177.11 Created by Seminario method using N Y2-MI-Y5 114.18 89.76 Created by Seminario method using N Y2-MI-Y6 145.3 90.37 Created by Seminario method using N Y3-MI-Y4 160.84 90.18 Created by Seminario method using N Y3-MI-Y5 123.28 177.38 Created by Seminario method using N Y4-MI-Y5 144.99 90.48 Created by Seminario method using N Y4-MI-Y6 127.75 92.52 Created by Seminario method using N Y4-MI-Y6 127.15 86.97 Created by Seminario method using N ce-Y2-M1 142.49 126.19 Created by Seminario method using N ce-Y3-M1 159.75 127.24 Created by Seminario method using N ce-Y3-M1 156.89 126.86 Created by Seminario method using N CC-CV-Y1 70 120 AA his Y1-CV-H4 50 120 AA his Y1-CV-H4 50 120 AA his Y1-ce-ee 68.67 123.98 SOURCE4_SOURCE5 10 Y3-ed-ee 68.67 123.98	Y2-M1-Y3	125.01	89.71	Created by Seminario method using MCPB.py				
Y2-M1-Y5 114.18 89.76 Created by Seminario method using N Y2-M1-Y6 145.3 90.37 Created by Seminario method using N Y3-M1-Y4 160.84 90.18 Created by Seminario method using N Y3-M1-Y5 123.28 177.38 Created by Seminario method using N Y3-M1-Y6 126.74 90.47 Created by Seminario method using N Y4-M1-Y5 144.99 90.48 Created by Seminario method using N Y4-M1-Y6 127.75 92.52 Created by Seminario method using N cc-Y2-M1 142.49 126.19 Created by Seminario method using N cc-Y3-M1 159.75 127.24 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y5-M1 156.89 126.86 Created by Seminario method using N CC-CV-Y1 70 117 AA his Y1-CV-H4 50 120 AA his Y2-cd-cd 67.63 121.98 CORR_SOURCE5 10 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y4-cd-ce 68.67 <td>Y2-M1-Y4</td> <td>119.82</td> <td>177.11</td> <td>Created by Seminario method using MCPB.py</td>	Y2-M1-Y4	119.82	177.11	Created by Seminario method using MCPB.py				
Y2-M1-Y6 145.3 90.37 Created by Seminario method using N Y3-M1-Y4 160.84 90.18 Created by Seminario method using N Y3-M1-Y5 123.28 177.38 Created by Seminario method using N Y3-M1-Y6 126.74 90.47 Created by Seminario method using N Y4-M1-Y5 144.99 90.48 Created by Seminario method using N Y4-M1-Y6 127.75 92.52 Created by Seminario method using N Y5-M1-Y6 127.15 86.97 Created by Seminario method using N cc-Y2-M1 142.49 126.19 Created by Seminario method using N cc-Y3-M1 159.75 127.24 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y5-M1 156.89 126.86 Created by Seminario method using N CC-CV-Y1 70 120 AA his NA-CR-Y1 70 120 AA his Y1-CV-H4 50 120 AA his Y2-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y2-cd-cd 67.63 121.98 <t< td=""><td>Y2-M1-Y5</td><td>114.18</td><td>89.76</td><td>Created by Seminario method using MCPB.py</td></t<>	Y2-M1-Y5	114.18	89.76	Created by Seminario method using MCPB.py				
Y3-M1-Y4160.8490.18Created by Seminario method using NY3-M1-Y5123.28177.38Created by Seminario method using NY4-M1-Y5126.7490.47Created by Seminario method using NY4-M1-Y6126.7490.48Created by Seminario method using NY4-M1-Y6127.7592.52Created by Seminario method using NY5-M1-Y6127.1586.97Created by Seminario method using Ncc-Y2-M1142.49126.19Created by Seminario method using Ncc-Y4-M1100.26127.38Created by Seminario method using NCC-CV-Y170120AA hisV1-CR-H550120AA hisY2-cd-cd67.63121.98CORR_SOURCE5Y2-cd-cd67.63121.98CORR_SOURCE5Y2-cd-ce68.67123.98SOURCE4_SOURCE5Y3-cd-ce68.67123.98SOURCE4_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-ce68.67123.98SOURCE4_SOURCE5Y4-cd-ce68.67123.98SOURCE4_SOURCE5Y4-cd-ce68.67123.98SOURCE4_SOURCE5Y4-cd-ce68.67123.98SOURCE4_SOURCE5Y4-cd-ce68.67<	Y2-M1-Y6	145.3	90.37	Created by Seminario method using MCPB.py				
Y3-M1-Y5 123.28 177.38 Created by Seminario method using N Y3-M1-Y6 126.74 90.47 Created by Seminario method using N Y4-M1-Y5 144.99 90.48 Created by Seminario method using N Y4-M1-Y6 127.75 92.52 Created by Seminario method using N y5-M1-Y6 127.15 86.97 Created by Seminario method using N cc-Y2-M1 142.49 126.19 Created by Seminario method using N cc-Y3-M1 159.75 127.24 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N CC-CV-Y1 70 120 AA his V1-CR-H5 50 120 AA his Y1-CV-H4 50 120 AA his Y2-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y3-cd-ce 68.67 123.98	Y3-M1-Y4	160.84	90.18	Created by Seminario method using MCPB.py				
Y3-M1-Y6 126.74 90.47 Created by Seminario method using N Y4-M1-Y5 144.99 90.48 Created by Seminario method using N Y4-M1-Y6 127.75 92.52 Created by Seminario method using N y5-M1-Y6 127.15 86.97 Created by Seminario method using N cc-Y2-M1 142.49 126.19 Created by Seminario method using N cc-Y3-M1 159.75 127.24 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y5-M1 156.89 126.86 Created by Seminario method using N cc-Y1-W1 70 120 AA his CC-CV-Y1 70 117 AA his NA-CR-Y1 70 120 AA his Y1-CV-H4 50 120 AA his Y2-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 141 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 <td>Y3-M1-Y5</td> <td>123.28</td> <td>177.38</td> <td>Created by Seminario method using MCPB.py</td>	Y3-M1-Y5	123.28	177.38	Created by Seminario method using MCPB.py				
Y4-M1-Y5 144.99 90.48 Created by Seminario method using N Y4-M1-Y6 127.75 92.52 Created by Seminario method using N Y5-M1-Y6 127.15 86.97 Created by Seminario method using N cc-Y2-M1 142.49 126.19 Created by Seminario method using N cc-Y3-M1 159.75 127.24 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y1-V1 70 120 AA his Y1-CR-H5 50 120 AA his Y1-CV-H4 50 120 AA his Y2-cd-ce 68.67 123.98 SOURCE4_SOURCE5 141 Y3-cd-ce 68.67 123.98	Y3-M1-Y6	126.74	90.47	Created by Seminario method using MCPB.py				
Y4-M1-Y6 127.75 92.52 Created by Seminario method using N Y5-M1-Y6 127.15 86.97 Created by Seminario method using N cc-Y2-M1 142.49 126.19 Created by Seminario method using N cc-Y3-M1 159.75 127.24 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y4-M1 100.26 127.38 Created by Seminario method using N cc-Y5-M1 156.89 126.86 Created by Seminario method using N CC-CV-Y1 70 117 AA his Y1-CR-H5 50 120 AA his Y1-CV-H4 50 120 AA his Y2-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 141 Y4-cd-ce 68.67 123.98	Y4-M1-Y5	144.99	90.48	Created by Seminario method using MCPB.py				
Y5-M1-Y6127.1586.97Created by Seminario method using Ncc-Y2-M1142.49126.19Created by Seminario method using Ncc-Y3-M1159.75127.24Created by Seminario method using Ncc-Y4-M1100.26127.38Created by Seminario method using Ncc-Y5-M1156.89126.86Created by Seminario method using NCC-CV-Y170120AA hisCR-Y1-CV70117AA hisNA-CR-Y170120AA hisY1-CV-H450120AA hisY2-cd-cd67.63121.98CORR_SOURCE5Y3-cd-cd67.63121.98CORR_SOURCE5Y3-cd-cd67.63121.98CORR_SOURCE5Y3-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y6-ce-h449.97121.14SOURCE3_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125	Y4-M1-Y6	127.75	92.52	Created by Seminario method using MCPB.py				
cc-Y2-M1142.49126.19Created by Seminario method using Ncc-Y3-M1159.75127.24Created by Seminario method using Ncc-Y4-M1100.26127.38Created by Seminario method using Ncc-Y5-M1156.89126.86Created by Seminario method using NCC-CV-Y170120AA hisCR-Y1-CV70117AA hisNA-CR-Y170120AA hisY1-CR-H550120AA hisY2-cd-cd67.63121.98CORR_SOURCE5Y2-cd-ce68.67123.98SOURCE4_SOURCE5Y3-cd-ce68.67123.98SOURCE4_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y4-cd-cd67.63121.98CORR_SOURCE5Y6-cc-h449.97121.14SOURCE3_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.52SOURCE3_SOURCE5y6-cd-h550.58125.59CORR_SOURCE5y6-cd-h550.54125.49CORR_SOU	Y5-M1-Y6	127.15	86.97	Created by Seminario method using MCPB.py				
cc-Y3-M1159.75127.24Created by Seminario method using Ncc-Y4-M1100.26127.38Created by Seminario method using Ncc-Y5-M1156.89126.86Created by Seminario method using NCC-CV-Y170120AA hisCR-Y1-CV70117AA hisNA-CR-Y170120AA hisY1-CV-H450120AA hisY2-cd-cd67.63121.98CORR_SOURCE5Y2-cd-ce68.67123.98SOURCE4_SOURCE5Y3-cd-ce68.67123.98SOURCE4_SOURCE5Y3-cd-ce68.67123.98SOURCE4_SOURCE5Y4-cd-ce67.63121.98CORR_SOURCE5Y4-cd-ce68.67123.98SOURCE4_SOURCE5Y4-cd-ce67.63121.98CORR_SOURCE5Y4-cd-ce67.63121.98CORR_SOURCE5Y4-cd-ce68.67123.98SOURCE4_SOURCE5Y4-cd-ce67.63121.98CORR_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5Y6-cd-h550.58125.52SOURCE3_SOURCE5Y6-cd-h550.58125.59CORR_SOURCE5Y6-cd-h550.58125.59CORR_SOURCE5Ce-Y3-cd71.76105.49CORR_SOURCE5	cc-Y2-M1	142.49	126.19	Created by Seminario method using MCPB.py				
cc-Y4-M1 100.26 127.38 Created by Seminario method using M cc-Y5-M1 156.89 126.86 Created by Seminario method using M CC-CV-Y1 70 120 AA his CR-Y1-CV 70 117 AA his NA-CR-Y1 70 120 AA his Y1-CR-H5 50 120 AA his Y1-CV-H4 50 120 AA his Y2-cd-cd 67.63 121.98 CORR_SOURCE5 141 1 Y2-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 141 1 Y3-cd-cd 67.63 121.98 CORR_SOURCE5 141 1 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y4-cd-ced 67.63 121.98 CORR_SOURCE5 141 1 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 1 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 1 Y6-cc-h4 49.97	cc-Y3-M1	159.75	127.24	Created by Seminario method using MCPB.py				
cc-Y5-M1 156.89 126.86 Created by Seminario method using M CC-CV-Y1 70 120 AA his CR-Y1-CV 70 117 AA his NA-CR-Y1 70 120 AA his Y1-CV-H4 50 120 AA his Y1-CV-H4 50 120 AA his Y2-cd-cd 67.63 121.98 CORR_SOURCE5 141 1 Y2-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 10 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 141 1 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 141 14 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 14 14 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 14 14 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 14 14 Y6-cc-h4 49.97 121.14 S	cc-Y4-M1	100.26	127.38	Created by Seminario method using MCPB.py				
CC-CV-Y170120AA hisCR-Y1-CV70117AA hisNA-CR-Y170120AA hisY1-CR-H550120AA hisY1-CV-H450120AA hisY2-cd-cd 67.63 121.98CORR_SOURCE5141Y2-cd-ce68.67123.98SOURCE4_SOURCE510Y3-cd-cd 67.63 121.98CORR_SOURCE510Y3-cd-ce68.67123.98SOURCE4_SOURCE510Y4-cd-cd 67.63 121.98CORR_SOURCE5141Y4-cd-ce68.67123.98SOURCE4_SOURCE510Y4-cd-ce68.67123.98SOURCE4_SOURCE510Y5-cd-cd 67.63 121.98CORR_SOURCE5141Y6-cc-h449.97121.14SOURCE3_SOURCE55740Y6-cd-h550.58125.52SOURCE3_SOURCE513090Y6-cd-ha74.9112.22SOURCE3_SOURCE518101cc-Y2-cd71.76105.49CORR_SOURCE518101cc-Y3-cd71.76105.49CORR_SOURCE518101cc-Y5-cd71.76105.49CORR_SOURCE518101cc-Y5-cd71.76105.49CORR_SOURCE518101cc-Y5-cd71.76105.49CORR_SOURCE518101cc-Y5-cd71.76105.49CORR_SOURCE518101cc-Y5-cd71.76105.49CORR_SOURCE518101<	cc-Y5-M1	156.89	126.86	Created by Seminario method using MCPB.py				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC-CV-Y1	70	120	AA his				
NA-CR-Y170120AA hisY1-CR-H550120AA hisY1-CV-H450120AA hisY2-cd-cd 67.63 121.98CORR_SOURCE5141Y2-cd-ce 68.67 123.98SOURCE4_SOURCE510Y3-cd-cd 67.63 121.98CORR_SOURCE5141Y3-cd-ce 68.67 123.98SOURCE4_SOURCE510Y4-cd-ce 68.67 123.98SOURCE4_SOURCE510Y4-cd-ce 68.67 123.98SOURCE4_SOURCE5141Y4-cd-ce 68.67 123.98SOURCE4_SOURCE510Y5-cd-cd 67.63 121.98CORR_SOURCE5141Y6-cc-h449.97121.14SOURCE3_SOURCE5141Y6-cd-h5 50.58 125.52SOURCE3_SOURCE51309Y6-cd-na 74.9 112.22SOURCE3_SOURCE51810cc-Y2-cd 71.76 105.49CORR_SOURCE51810cc-Y4-cd 71.76 105.49CORR_SOURCE51810cc-Y5-cd 71.76 105.49CORR_SOURCE51810cc-Y6-cd 71.76 105.49CORR_SOURCE51810cc-Y6-cd 71.76 105.49CORR_SOURCE51810cc-Y6-cd 71.76 105.49CORR_SOURCE51810cc-Y6-cd 71.76 105.49CORR_SOURCE51810cc-Y6-cd 71.76 105.49CORR_SOURCE51810cc-Y6-cd 71.76 105.49CORR_SOURCE51810cc-Y6-cd<	CR-Y1-CV	70	117	AA his				
Y1-CR-H550120AA hisY1-CV-H450120AA hisY2-cd-cd 67.63 121.98CORR_SOURCE51411Y2-cd-ce 68.67 123.98SOURCE4_SOURCE510Y3-cd-cd 67.63 121.98CORR_SOURCE51411Y3-cd-ce 68.67 123.98SOURCE4_SOURCE510Y4-cd-ce 68.67 123.98SOURCE4_SOURCE5141Y4-cd-ce 68.67 123.98SOURCE4_SOURCE5141Y4-cd-ce 68.67 123.98SOURCE4_SOURCE510Y5-cd-cd 67.63 121.98CORR_SOURCE51411Y6-cc-h449.97121.14SOURCE3_SOURCE55740Y6-cd-h550.58125.52SOURCE3_SOURCE513090Y6-cd-na74.9112.22SOURCE3_SOURCE518101cc-Y3-cd71.76105.49CORR_SOURCE518101cc-Y4-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49<	NA-CR-Y1	70	120	AA his				
Y1-CV-H450120AA hisY2-cd-cd 67.63 121.98 CORR_SOURCE5 141 1Y2-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y3-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y4-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y4-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y5-cd-cd 67.63 121.98 CORR_SOURCE5 141 11 Y6-ce-h4 49.97 121.14 SOURCE3_SOURCE5 574 0 Y6-cd-h5 50.58 125.52 SOURCE3_SOURCE5 1309 9 Y6-cd-ha 74.9 112.22 SOURCE3_SOURCE5 1810 cc-Y2-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y3-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y6-cd	Y1-CR-H5	50	120	AA his				
Y2-cd-cd 67.63 121.98 CORR_SOURCE5 141 1 Y2-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y3-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y5-cd-cd 67.63 121.98 CORR_SOURCE5 141 1 Y6-cc-h4 49.97 121.14 SOURCE3_SOURCE5 574 0 Y6-cd-h5 50.58 125.52 SOURCE3_SOURCE5 1309 Y6-cd-na 74.9 112.22 SOURCE3_SOURCE5 1810 cc-Y2-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y3-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y5-cd 71.76	Y1-CV-H4	50	120	AA his				
Y2-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y3-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y3-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y4-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y5-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y6-cc-h4 49.97 121.14 SOURCE3_SOURCE5 574 0 Y6-cd-h5 50.58 125.52 SOURCE3_SOURCE5 1309 9 Y6-cd-na 74.9 112.22 SOURCE3_SOURCE5 2726 6 cc-Y2-cd 71.76 105.49 CORR_SOURCE5 1810 10 cc-Y3-cd 71.76 105.49 CORR_SOURCE5 1810 10 cc-Y4-cd 71.76 105.49 CORR_SOURCE5 1810 10 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 10 cc-Y6-cd	Y2-cd-cd	67.63	121.98	CORR_SOURCE5 141 1.9633				
Y3-cd-cd67.63121.98CORR_SOURCE5141Y3-cd-ce68.67123.98SOURCE4_SOURCE510Y4-cd-cd67.63121.98CORR_SOURCE5141Y4-cd-ce68.67123.98SOURCE4_SOURCE510Y5-cd-cd67.63121.98CORR_SOURCE51411Y6-cc-h449.97121.14SOURCE3_SOURCE55740Y6-cd-h550.58125.52SOURCE3_SOURCE513099Y6-cd-na74.9112.22SOURCE3_SOURCE52726cc-Y2-cd71.76105.49CORR_SOURCE51810cc-Y3-cd71.76105.49CORR_SOURCE51810cc-Y5-cd71.76105.49CORR_SOURCE51810cc-Y6-cd71.76105.49CORR_SOURCE51810cc-Y6-cd71.76105.49CORR_SOURCE51810cc-Y271.57112.56SOURCE31414.287	Y2-cd-ce	68.67	123.98	SOURCE4_SOURCE5 10 2.4097				
Y3-cd-ce68.67123.98SOURCE4_SOURCE510Y4-cd-cd67.63121.98CORR_SOURCE5141Y4-cd-ce68.67123.98SOURCE4_SOURCE510Y5-cd-cd67.63121.98CORR_SOURCE51411Y6-cc-h449.97121.14SOURCE3_SOURCE55740Y6-cd-h550.58125.52SOURCE3_SOURCE513090Y6-cd-na74.9112.22SOURCE3_SOURCE518100cc-Y2-cd71.76105.49CORR_SOURCE518101cc-Y3-cd71.76105.49CORR_SOURCE518101cc-Y5-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49CORR_SOURCE518101cc-Y6-cd71.76105.49CORR_SOURCE518101cc-Y271.57112.56SOURCE31414.287	Y3-cd-cd	67.63	121.98	CORR_SOURCE5 141 1.9633				
Y4-cd-cd 67.63 121.98 CORR_SOURCE5 141 Y4-cd-ce 68.67 123.98 SOURCE4_SOURCE5 10 Y5-cd-cd 67.63 121.98 CORR_SOURCE5 141 1 Y6-cc-h4 49.97 121.14 SOURCE3_SOURCE5 574 0 Y6-cd-h5 50.58 125.52 SOURCE3_SOURCE5 1309 Y6-cd-na 74.9 112.22 SOURCE3_SOURCE5 1810 cc-Y2-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y4-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 <	Y3-cd-ce	68.67	123.98	SOURCE4_SOURCE5 10 2.4097				
Y4-cd-ce68.67123.98SOURCE4_SOURCE510Y5-cd-cd67.63121.98CORR_SOURCE51411Y6-cc-h449.97121.14SOURCE3_SOURCE55740Y6-cd-h550.58125.52SOURCE3_SOURCE51309Y6-cd-na74.9112.22SOURCE3_SOURCE52726cc-Y2-cd71.76105.49CORR_SOURCE51810cc-Y3-cd71.76105.49CORR_SOURCE51810cc-Y4-cd71.76105.49CORR_SOURCE51810cc-Y5-cd71.76105.49CORR_SOURCE51810cc-Y6-cd71.76105.49CORR_SOURCE51810cc-Y6-cd71.76105.49CORR_SOURCE51810cc-Y6-cd71.76105.49CORR_SOURCE51810cc-Y271.57112.56SOURCE31414.287	Y4-cd-cd	67.63	121.98	CORR_SOURCE5 141 1.9633				
Y5-cd-cd67.63121.98CORR_SOURCE51411Y6-cc-h449.97121.14SOURCE3_SOURCE55740Y6-cd-h550.58125.52SOURCE3_SOURCE51309Y6-cd-na74.9112.22SOURCE3_SOURCE52726cc-Y2-cd71.76105.49CORR_SOURCE51810cc-Y3-cd71.76105.49CORR_SOURCE51810cc-Y4-cd71.76105.49CORR_SOURCE51810cc-Y5-cd71.76105.49CORR_SOURCE51810cc-Y6-cd71.76105.49CORR_SOURCE51810cc-Y6-cd71.76105.49CORR_SOURCE51810cc-Y271.57112.56SOURCE31414.287	Y4-cd-ce	68.67	123.98	SOURCE4_SOURCE5 10 2.4097				
Y6-cc-h4 49.97 121.14 SOURCE3_SOURCE5 574 0 Y6-cd-h5 50.58 125.52 SOURCE3_SOURCE5 1309 1309 1309 1309 1309 1309 1309 1309 1309 1309 14000 14000 14000 14000 14000 <td< td=""><td>Y5-cd-cd</td><td>67.63</td><td>121.98</td><td>CORR_SOURCE5 141 1.9633</td></td<>	Y5-cd-cd	67.63	121.98	CORR_SOURCE5 141 1.9633				
Y6-cd-h5 50.58 125.52 SOURCE3_SOURCE5 1309 Y6-cd-na 74.9 112.22 SOURCE3_SOURCE5 2726 cc-Y2-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y3-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y4-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y4-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y4-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y2 71.57 112.56 SOURCE3 141 4.287	Y6-cc-h4	49.97	121.14	SOURCE3_SOURCE5 574 0.5658				
Y6-cd-na 74.9 112.22 SOURCE3_SOURCE5 2726 cc-Y2-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y3-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y3-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y4-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y2 71.57 112.56 SOURCE3 141 4.287	Y6-cd-h5	50.58	125.52	SOURCE3_SOURCE5 1309 0.7276				
cc-Y2-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y3-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y4-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-cc-Y2 71.57 112.56 SOURCE3 141 4.287	Y6-cd-na	74.9	112.22	SOURCE3_SOURCE5 2726 1.5103				
cc-Y3-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y4-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-cc-Y2 71.57 112.56 SOURCE3 141 4.287	cc-Y2-cd	71.76	105.49	CORR_SOURCE5 1810 1.9032				
cc-Y4-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 1 cc-cc-Y2 71.57 112.56 SOURCE3 141 4.287	cc-Y3-cd	71.76	105.49	CORR_SOURCE5 1810 1.9032				
cc-Y5-cd 71.76 105.49 CORR_SOURCE5 1810 cc-Y6-cd 71.76 105.49 CORR_SOURCE5 1810 cc-cc-Y2 71.57 112.56 SOURCE3 141 4.287	cc-Y4-cd	71.76	105.49	CORR_SOURCE5 1810 1.9032				
cc-Y6-cd71.76105.49CORR_SOURCE51810cc-cc-Y271.57112.56SOURCE31414.287	cc-Y5-cd	71.76	105.49	CORR_SOURCE5 1810 1.9032				
cc-cc-Y2 71.57 112.56 SOURCE3 141 4.287	cc-Y6-cd	71.76	105.49	CORR_SOURCE5 1810 1.9032				
	cc-cc-Y2	71.57	112.56	SOURCE3 141 4.2871				
cc-cc-Y3 71.57 112.56 SOURCE3 141 4.28	cc-cc-Y3	71.57	112.56	SOURCE3 141 4.2871				

cc-cc-Y4	71.57	112.56	SOURCE3	141	4.2871	
cc-cc-Y5	71.57	112.56	SOURCE3	141	4.2871	
cd-cc-Y6	72.17	111.65	CORR_SOURCE5	165	6 1.8430	
ce-cc-Y2	68.07	121.7	CORR_SOURCE5	58	1.4179	
ce-cc-Y3	68.07	121.7	CORR_SOURCE5	58	1.4179	
ce-cc-Y4	68.07	121.7	CORR_SOURCE5	58	1.4179	
ce-cc-Y5	68.07	121.7	CORR_SOURCE5	58	1.4179	
ce-cd-Y5	68.67	123.98	SOURCE4_SOURCE	5	10 2.4097	
		DIF	IE			

The definition	The divider	The torsion barrier term V_n	The phase γ	The periodicity			
		(kcal/mol)	(degrees)	n			
X -CR-Y1-X	2	10	180	2	JCC,7,(1986),230		
X -CV-Y1-X	2	4.8	180	2	JCC,7,(1986),230		
X -Y2-cd-X	2	9.5	180	2	statistiv value from parm94		
X -Y3-cd-X	2	9.5	180	2	statistiv value from parm94		
X -Y4-cd-X	2	9.5	180	2	statistiv value from parm94		
Х -Ү6-сс-Х	2	9.5	180	2	statistic value from parm94		
X -Y6-cd-X	2	9.5	180	2	statistiv value from parm94		
X -cc-Y2-X	2	9.5	180	2	statistic value from parm94		
X -cc-Y3-X	2	9.5	180	2	statistic value from parm94		
X -cc-Y4-X	2	9.5	180	2	statistic value from parm94		
X -cc-Y5-X	2	9.5	180	2	statistic value from parm94		
X -cd-Y5-X	2	9.5	180	2	statistiv value from parm94		
CC-CV-Y1-M1	3	0	0	3	Treat as zero by MCPB.py		
CR-Y1-M1-Y2	3	0	0	3	Treat as zero by MCPB.py		
CR-Y1-M1-Y3	3	0	0	3	Treat as zero by MCPB.py		
CR-Y1-M1-Y4	3	0	0	3	Treat as zero by MCPB.py		
CR-Y1-M1-Y5	3	0	0	3	Treat as zero by MCPB.py		
CR-Y1-M1-Y6	3	0	0	3	Treat as zero by MCPB.py		
M1-Y1-CR-H5	3	0	0	3	Treat as zero by MCPB.py		
M1-Y1-CV-H4	3	0	0	3	Treat as zero by MCPB.py		
M1-Y2-cd-cd	3	0	0	3	Treat as zero by MCPB.py		
M1-Y2-cd-ce	3	0	0	3	Treat as zero by MCPB.py		
M1-Y3-cd-cd	3	0	0	3	Treat as zero by MCPB.py		
M1-Y3-cd-ce	3	0	0	3	Treat as zero by MCPB.py		
M1-Y4-cd-cd	3	0	0	3	Treat as zero by MCPB.py		
M1-Y4-cd-ce	3	0	0	3	Treat as zero by MCPB.py		
M1-Y5-cd-cd	3	0	0	3	Treat as zero by MCPB.py		
M1-Y6-cc-cd	3	0	0	3	Treat as zero by MCPB.py		
M1-Y6-cc-h4	3	0	0	3	Treat as zero by MCPB.py		
M1-Y6-cd-h5	3	0	0	3	Treat as zero by MCPB.py		
M1-Y6-cd-na	3	0	0	3	Treat as zero by MCPB.py		
NA-CR-Y1-M1	3	0	0	3	Treat as zero by MCPB.py		

Y1-M1-Y2-cc	3	0	0	3	Treat as zero by MCPB.py
Y1-M1-Y2-cd	3	0	0	3	Treat as zero by MCPB.py
Y1-M1-Y3-cc	3	0	0	3	Treat as zero by MCPB.py
Y1-M1-Y3-cd	3	0	0	3	Treat as zero by MCPB.py
Y1-M1-Y4-cc	3	0	0	3	Treat as zero by MCPB.py
Y1-M1-Y4-cd	3	0	0	3	Treat as zero by MCPB.py
Y1-M1-Y5-cc	3	0	0	3	Treat as zero by MCPB.py
Y1-M1-Y5-cd	3	0	0	3	Treat as zero by MCPB.py
Y1-M1-Y6-cc	3	0	0	3	Treat as zero by MCPB.py
Y1-M1-Y6-cd	3	0	0	3	Treat as zero by MCPB.py
Y2-M1-Y1-CV	3	0	0	3	Treat as zero by MCPB.py
Y2-M1-Y3-cc	3	0	0	3	Treat as zero by MCPB.py
Y2-M1-Y3-cd	3	0	0	3	Treat as zero by MCPB.py
Y2-M1-Y4-cc	3	0	0	3	Treat as zero by MCPB.py
Y2-M1-Y4-cd	3	0	0	3	Treat as zero by MCPB.py
Y2-M1-Y5-cc	3	0	0	3	Treat as zero by MCPB.py
Y2-M1-Y5-cd	3	0	0	3	Treat as zero by MCPB.py
Y2-M1-Y6-cc	3	0	0	3	Treat as zero by MCPB.py
Y2-M1-Y6-cd	3	0	0	3	Treat as zero by MCPB.py
Y2-cd-ce-cc	1	1	180	2	same as X -ce-ce-X
Y2-cd-ce-ha	1	1	180	2	same as X -ce-ce-X
Y3-M1-Y1-CV	3	0	0	3	Treat as zero by MCPB.py
Y3-M1-Y2-cd	3	0	0	3	Treat as zero by MCPB.py
Y3-M1-Y4-cc	3	0	0	3	Treat as zero by MCPB.py
Y3-M1-Y4-cd	3	0	0	3	Treat as zero by MCPB.py
Y3-M1-Y5-cc	3	0	0	3	Treat as zero by MCPB.py
Y3-M1-Y5-cd	3	0	0	3	Treat as zero by MCPB.py
Y3-M1-Y6-cc	3	0	0	3	Treat as zero by MCPB.py
Y3-M1-Y6-cd	3	0	0	3	Treat as zero by MCPB.py
Y3-cd-ce-cc	1	1	180	2	same as X -ce-ce-X
Y3-cd-ce-ha	1	1	180	2	same as X -ce-ce-X
Y4-M1-Y1-CV	3	0	0	3	Treat as zero by MCPB.py
Y4-M1-Y2-cd	3	0	0	3	Treat as zero by MCPB.py
Y4-M1-Y3-cd	3	0	0	3	Treat as zero by MCPB.py
Y4-M1-Y5-cc	3	0	0	3	Treat as zero by MCPB.py
Y4-M1-Y5-cd	3	0	0	3	Treat as zero by MCPB.py
Y4-M1-Y6-cc	3	0	0	3	Treat as zero by MCPB.py
Y4-M1-Y6-cd	3	0	0	3	Treat as zero by MCPB.py
Y4-cd-ce-cc	1	1	180	2	same as X -ce-ce-X
Y4-cd-ce-ha	1	1	180	2	same as X -ce-ce-X
Y5-M1-Y1-CV	3	0	0	3	Treat as zero by MCPB.py
Y5-M1-Y2-cd	3	0	0	3	Treat as zero by MCPB.py
Y5-M1-Y3-cd	3	0	0	3	Treat as zero by MCPB.py
Y5-M1-Y4-cd	3	0	0	3	Treat as zero by MCPB.py

Y5-M1-Y6-cc	3	0	0	3	Treat as zero by MCPB.py
Y5-M1-Y6-cd	3	0	0	3	Treat as zero by MCPB.py
Y5-cd-ce-cc	1	1	180	2	same as X -ce-ce-X
Y6-M1-Y1-CV	3	0	0	3	Treat as zero by MCPB.py
Y6-M1-Y2-cd	3	0	0	3	Treat as zero by MCPB.py
Y6-M1-Y3-cd	3	0	0	3	Treat as zero by MCPB.py
Y6-M1-Y4-cd	3	0	0	3	Treat as zero by MCPB.py
Y6-M1-Y5-cd	3	0	0	3	Treat as zero by MCPB.py
cc-Y2-M1-Y3	3	0	0	3	Treat as zero by MCPB.py
cc-Y2-M1-Y4	3	0	0	3	Treat as zero by MCPB.py
cc-Y2-M1-Y5	3	0	0	3	Treat as zero by MCPB.py
cc-Y2-M1-Y6	3	0	0	3	Treat as zero by MCPB.py
cc-Y3-M1-Y4	3	0	0	3	Treat as zero by MCPB.py
cc-Y3-M1-Y5	3	0	0	3	Treat as zero by MCPB.py
cc-Y3-M1-Y6	3	0	0	3	Treat as zero by MCPB.py
cc-Y4-M1-Y5	3	0	0	3	Treat as zero by MCPB.py
cc-Y4-M1-Y6	3	0	0	3	Treat as zero by MCPB.py
cc-Y5-M1-Y6	3	0	0	3	Treat as zero by MCPB.py
cc-cc-Y2-M1	3	0	0	3	Treat as zero by MCPB.py
cc-cc-Y3-M1	3	0	0	3	Treat as zero by MCPB.py
cc-cc-Y4-M1	3	0	0	3	Treat as zero by MCPB.py
cc-cc-Y5-M1	3	0	0	3	Treat as zero by MCPB.py
cd-ce-cc-Y2	1	1	180	2	same as X -ce-ce-X
cd-ce-cc-Y3	1	1	180	2	same as X -ce-ce-X
cd-ce-cc-Y4	1	1	180	2	same as X -ce-ce-X
cd-ce-cc-Y5	1	1	180	2	same as X -ce-ce-X
ce-cc-Y2-M1	3	0	0	3	Treat as zero by MCPB.py
ce-cc-Y3-M1	3	0	0	3	Treat as zero by MCPB.py
ce-cc-Y4-M1	3	0	0	3	Treat as zero by MCPB.py
ce-cc-Y5-M1	3	0	0	3	Treat as zero by MCPB.py
ce-cd-Y5-M1	3	0	0	3	Treat as zero by MCPB.py
ha-ce-cc-Y2	1	1	180	2	same as X -ce-ce-X
ha-ce-cc-Y3	1	1	180	2	same as X -ce-ce-X
ha-ce-cc-Y4	1	1	180	2	same as X -ce-ce-X
ha-ce-cc-Y5	1	1	180	2	same as X -ce-ce-X
ha-ce-cd-Y5	1	1	180	2	same as X -ce-ce-X

Table S8: Additional dihedral angle parameters of the inhibitor and porphyrin ring in the C1 inhibitor-IDO complex.

C1 inhibitor (DIHE)								
The definition	The	The torsion barrier	The phase γ	The mente distance				
	divider	term V _n (kcal/mol)	(degrees)	The periodicity n				
cc-cd-ca-ca	1	0.7	180	2	same as X -c2-ca-X			
na-cd-ca-ca	1	0.7	180	2	same as X -c2-ca-X			
		Porphy	yrin ring (DIHE)					
The definition	The	The torsion barrier	The phase γ	The periodicity p				
The definition	divider	term V _n (kcal/mol)	(degrees)					
cc-ce-cd-nd	1	1	180	2	same as X -ce-ce-X			
cc-ce-cd-cd	1	1	180	2	same as X -ce-ce-X			
nd-cc-ce-cd	1	1	180	2	same as X -ce-ce-X			
nd-cc-ce-ha	1	1	180	2	same as X -ce-ce-X			
nd-cd-ce-ha	1	1	180	2	same as X -ce-ce-X			
cd-ce-cc-cc	1	1	180	2	same as X -ce-ce-X			
cd-cd-ce-ha	1	1	180	2	same as X -ce-ce-X			
cc-cc-ce-ha	1	1	180	2	same as X -ce-ce-X			
cc-cc-ce-c2	1	1	180	2	same as X -ce-ce-X			
cd-cc-ce-c2	1	1	180	2	same as X -ce-ce-X			
cd-cc-ce-ha	1	1	180	2	same as X -ce-ce-X			