Electronic Supplementary Information

Characterization of Sm³⁺-Activated Carbonated Calcium Chlorapatite Phosphors for Theranostic Applications: A Comparative Study of Coprecipitation and Hydrothermal Methods

Katarzyna Szyszka¹* and Rafal J. Wiglusz^{1,2}*

 ¹ Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland
² Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44100 Gliwice, Poland

Figure S1. Relationship between log(I/x) and log(x) in co-precipitated materials (a) and hydrothermally synthesized (b) Sm³⁺:CaClAp-CO₃ phosphors.

Material	Co-precipitation			Hydrothermal		
	$ au_1$ (ms)	τ ₂ (ms)	τ_{av} (ms)	τ ₁ (ms)	τ ₂ (ms)	$ au_{av}$ (ms)
0.5 mol% Sm ³⁺	0.55	2.9	2.5	0.62	2.9	2.7
1 mol% Sm ³⁺	0.44	2.7	2.2	0.73	3.3	2.9
2 mol% Sm ³⁺	0.36	2.5	1.9	0.83	3.3	2.9
3 mol% Sm ³⁺	0.31	1.9	1.3	0.65	3.0	2.5
5 mol% Sm ³⁺	0.40	2.4	1.9	0.56	2.6	2.2

Table S1. The τ_1 , τ_2 and average fluorescence decay time for obtained materials.