Supporting Information

Molecular Crowding Effect in Hantzch Pyridine Synthesis in Polyethylene Glycol Aqueous Solution

Akihisa Miyagawa ${ }^{\text {a* }}$, Yasuyuki Ueda ${ }^{\text {b* }}$, Kiyoharu Nakatani ${ }^{\text {a }}$
a: Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
Tel.: +81-29-853-6914
E-mail: miyagawa@chem.tsukuba.ac.jp
b: Institute of Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263- 8555, Japan

Figure S 1 . Optimized structures of chemical species for $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$, and \mathbf{E} using density functional theory, implemented in Gaussian 16.

Figure S2. Relationship between $C_{\text {PEG }}$ and $\ln \gamma_{\mathrm{A}}$.

Derivation of the Eq. (1).
The change in the absorption upon the titration was based on the Benesi-Hildebrand equation. ${ }^{1}$ The reaction between the metal ion and HQ^{-}can be represented by the following reversible processes:

$$
\begin{gathered}
\mathrm{M}^{2+}+\mathrm{HQ}^{-} \stackrel{K_{1}^{\prime}}{\rightleftarrows} \mathrm{MQ}+\mathrm{H}^{+} \\
\mathrm{MQ}+\mathrm{HQ}^{-} \stackrel{K_{2}}{\rightleftarrows} \mathrm{MQ}_{2}^{2-}+\mathrm{H}^{+}
\end{gathered}
$$

Thus, the equilibrium constants for the 1:1 and 1:2 complexes are given by

$$
\begin{array}{r}
K_{1}^{\prime}=\frac{[M Q]\left[H^{+}\right]}{\left[M^{2+}\right]\left[H Q^{-}\right]}, \\
K_{2}^{\prime}=\frac{\left[M Q_{2}^{2-}\right]\left[H^{+}\right]}{[M Q]\left[H Q^{-}\right] .} \tag{S2}
\end{array}
$$

Moreover, the total absorbance of the $1: 1$ and 1:2 complexes is given by the following equation according to the Lambert-Beer law.

$$
\begin{equation*}
\Delta A=\frac{l \varepsilon_{1} K_{1}^{\prime}\left[M^{2+}\right]\left[H Q^{-}\right]}{\left[H^{+}\right]}+\frac{l \varepsilon_{2} K_{1}^{\prime} K_{2}^{\prime}\left[M^{2+}\right]\left[H Q^{-}\right]^{2}}{\left[H^{+}\right]^{2}} \tag{S3}
\end{equation*}
$$

where l is the optical path length. The mass balance of metal ion is represented by

$$
\begin{equation*}
\left[M^{2+}\right]_{0}=\left[M^{2+}\right]+[M Q]+\left[\left(M Q_{2}\right)^{2-}\right]=\left[M^{2+}\right]+\frac{K_{1}^{\prime}\left[M^{2+}\right]\left[H Q^{-}\right]}{\left[H^{+}\right]}+\frac{K_{1}^{\prime} K_{2}^{\prime}\left[M^{2+}\right]\left[H Q^{-}\right]^{2}}{\left[H^{+}\right]^{2}} \tag{S4}
\end{equation*}
$$

where $\left[\mathrm{M}^{2+}\right]_{0}$ is the initial concentration of metal ion. By substituting Eq. (S4) into Eq. (S3), we obtain

$$
\begin{equation*}
\Delta A=\frac{l\left[M^{2+}\right]_{0}\left(K_{1}^{\prime} \varepsilon_{1}\left[H^{+}\right]\left[H Q^{-}\right]+K_{1}^{\prime} K_{2}^{\prime} \varepsilon_{2}\left[H Q^{-}\right]^{2}\right)}{\left[H^{+}\right]^{2}+K_{1}^{\prime}\left[H^{+}\right]\left[H Q^{-}\right]+K_{1}^{\prime} K_{2}^{\prime}\left[H Q^{-}\right]^{2}} . \tag{S5}
\end{equation*}
$$

Furthermore, when the acid dissociation constant of $\mathrm{HQ}^{-}, K_{\mathrm{a} 2}=\left[\mathrm{Q}^{2-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HQ}^{-}\right]$, is substituted into Eq. (S5), the following equation is obtained.

$$
\begin{equation*}
\Delta A=\frac{l\left[M^{2+}\right]_{0}\left(K_{1} K_{a 2} \varepsilon_{1}\left[H^{+}\right]\left[H Q^{-}\right]+K_{1} K_{2} K_{a 2}{ }^{2} \varepsilon_{2}\left[H Q^{-}\right]^{2}\right)}{\left[H^{+}\right]^{2}+K_{1} K_{a 2}\left[H^{+}\right]\left[H Q^{-}\right]+K_{1} K_{2} K_{a 2}{ }^{2}\left[H Q^{-}\right]^{2}} \tag{S6}
\end{equation*}
$$

