Supporting information

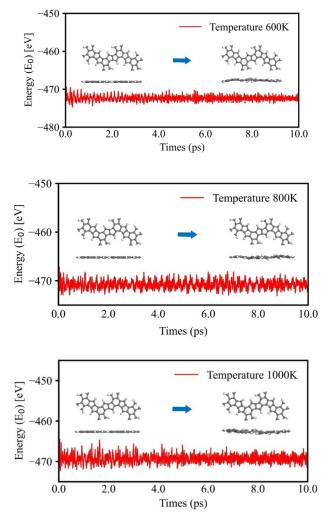
Holey penta-hexagonal graphene: a promising anode material for Liion batteries

Linguo Lu,¹ Raven Gallenstein,² Xinghui Liu,^{3,4} Yi Lin,⁵ Shiru Lin,^{2,*} Zhongfang Chen^{6,*}

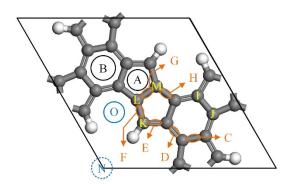
¹ Department of Physics, University of Puerto Rico, Rio Piedras, San Juan, PR 00931,

USA

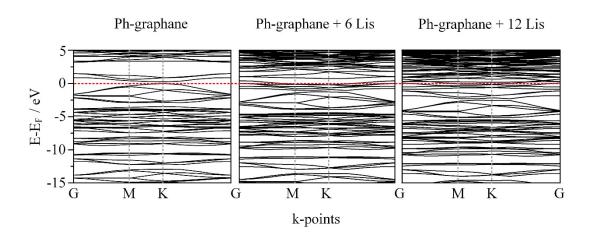
² Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, USA


³ Centre for Integrated Nanostructure Physics (CINAP), Institute of Basic Science (IBS), 2066 Seoburo, Jangan-Gu, Suwon 16419, Republic of Korea.

⁴ Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-Gu, Suwon 16419, Republic of Korea


⁵ Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, Virginia 23681, USA

⁶ Department of Chemistry, University of Puerto Rico, Rio Piedras, San Juan, PR 00931, USA


* To whom correspondence should be addressed. Email: <u>slin6@twu.edu</u> (S. Lin), <u>zhongfang.chen1@upr.edu</u> (Z. Chen)

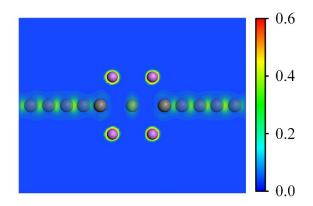

Figure S1. Initial and final structures of HPhG, accompanied by the energy evolution diagram, following a 10 ps AIMD simulation at 600 K, 800K, and 1000 K, respectively. The carbon and hydrogen atoms are denoted by grey and white, respectively.

Figure S2. The possible Li adsorption sites in a unit cell of the holey penta-hexagonal graphene. The carbon and hydrogen atoms are denoted by grey and white, respectively.

Figure S3. Band structures of holey penta-hexagonal graphene (HPhG) without and with adsorbed Li atoms (by PBE functional).

Figure S4. Electron location function (ELF) of holey penta-hexagonal graphene (HPhG) with 12 adsorbed Li atoms. The carbon, hydrogen and Lithium atoms are denoted by grey, white, and purple, respectively.