Supplementary Information (SI)

A. DFT Calculation Results

The density of the electronic states resulting from each of the calculations was convoluted with Gaussian function of a typical experimental width (0.71 eV at FWHM) to simulate the PES). Figure S1 compares the results thus obtained from orbital energies^{1,2} (method (i)) and from excited states of the cation²⁻⁴ (with 2 different functionals ,method (ii)).

S1. Comparison of calculated spectra using different computational methods with experimental data. 40 states were used in TD-DFT while 60 were used for CAM-TD-DFT.

The calculated electronic transitions are summarized in table ST1 and assigned to the bands in the experiment.

ST1. Calculation results in comparison to the experimental values for mainly the first 3 bands

B. Experimental Resolution

The table-top HHG spectrometer allows a scan of the generated harmonics by rotation of the grating as described in previous work^{5–8} and by Polleto and co-workers^{9,10}. An example spectrum of such a scan with Gaussian functions fitted to the different harmonics used in this study is presented in Figure S2 (fit results can be found in Table ST2). Note that the PES were not necessarily measured at the peak positions of each harmonic, mainly to minimize the leaking from an adjacent harmonic.

HH#	hv at peak [eV]	80% of FWHM [eV]
11	17.05	0.60
13	20.19	0.78
15	23.29	1.01
17	26.40	1.21
19	29.53	1.68
21	32.55	1.65
23	35.92	3.02
25	40.00	3.45

ST2. Results for Gaussian functions fits to HH scan by grating rotation.

S2. Scan of the grating of the monochromator in the high harmonic setup.

The fit to the trace measured by scanning the grating in the HHG experimental setup reveals the variance in widths of the generated harmonics and shows the expected broadening with the increasing order of the harmonic^{11,12}.

The widths measured from the fits to He peak in the EUV PES measurements (at VBE=24.7 eV) however, provide information about the experimental resolution for a given photon energy. These results are shown in table ST3. The experimental uncertainty for the EUV photon energy is estimated by the average half width of the Gaussians (at 80% of FWHM) and equals to 0.3 eV.

ST3. Results for Gaussian functions fits to helium peak in spectra of different photon energies

C. Fitted PES and Onset Energies

The fit to the EUV-PES is shown in [S3](#page-6-0). The fitted traces are a sum of multi-component Gaussian fit. Table ST4 gives a summary of the Gaussians fits for Bands 0-2. The increase in widths of Band 0 and 1 is due to the monochromator resolution.

ST4. Results for Gaussian Fits for Bands 0-2

S3. EUV PES with indication of the photon energies and the fitted spectra (full lines). The grey shades indicate Bands 0-2.

The intersection between linear fits to the rising edge of the signal and the baseline, see Figure S4, were used to determine AE for each PES trace. The results are summarized in Table ST5 and shown in Figure S4. Based on the Gaussian fit results for Band 0 in Table ST4, we see the monochromator has the best resolution for the 3 lowest harmonics. Hence, we deduce the appearance energy for the EUV case from the data taken with the latter as presented in the Table ST5 and Figure S4 below.

S4. Linear fits to baseline and steepest signal increase for EUV PES data analyzed for the estimation of the appearance energy from EUV.

D. List of Abbreviations

Bibliography

- 1 D. P. Chong, O. V. Gritsenko and E. J. Baerends, Interpretation of the Kohn-Sham orbital energies as approximate vertical ionization potentials, *J. Chem. Phys.*, 2002, **116**, 1760–1772.
- 2 V. Lemierre, A. Chrostowska, A. Dargelos and H. Chermette, Calculation of ionization potentials of small molecules: A comparative study of different methods, *J. Phys. Chem. A*, 2005, **109**, 8348–8355.
- 3 D. A. Horke and J. R. R. Verlet, Photoelectron spectroscopy of the model GFP chromophore anion, *Phys. Chem. Chem. Phys.*, 2012, **14**, 8511–8515.
- 4 O. Tau, A. Henley, A. N. Boichenko, N. N. Kleshchina, R. Riley, B. Wang, D. Winning, R. Lewin, I. P. Parkin, J. M. Ward, H. C. Hailes, A. V. Bochenkova and H. H. Fielding, Liquid-microjet photoelectron spectroscopy of the green fluorescent protein chromophore, *Nat. Commun.*, 2022, **13**, 1–7.
- 5 T. E. Gartmann, S. Hartweg, L. Ban, E. Chasovskikh, B. L. Yoder and R. Signorell, Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation, *Phys. Chem. Chem. Phys.*, 2018, **20**, 16364–16371.
- 6 L. Ban, C. W. West, E. Chasovskikh, T. E. Gartmann, B. L. Yoder and R. Signorell, Below Band Gap Formation of Solvated Electrons in Neutral Water Clusters?, *J. Phys. Chem. A*, 2020, **124**, 7959–7965.
- 7 T. E. Gartmann, L. Ban, B. L. Yoder, S. Hartweg, E. Chasovskikh and R. Signorell, Relaxation dynamics and genuine properties of the solvated electron in neutral water Clusters, *J. Phys. Chem. Lett.*, 2019, **10**, 4777–4782.
- 8 L. Ban, B. L. Yoder and R. Signorell, Size-Resolved Electron Solvation in Neutral Water Clusters, *J. Phys. Chem. A*, 2021, **125**, 5326–5334.
- 9 F. Frassetto, C. Cacho, C. A. Froud, I. C. E. Turcu, P. Villoresi, W. A. Bryan, E. Springate and L. Poletto, Single-grating monochromator for extreme-ultraviolet ultrashort pulses, *Opt. Express*, 2011, **19**, 19169.
- 10 F. Frassetto, P. Miotti and L. Poletto, Grating Configurations for the Spectral Selection of Coherent Ultrashort Pulses in the Extreme-Ultraviolet, *Photonics*, 2014, **1**, 442–454.
- 11 P. Salières and M. Lewenstein, Generation of ultrashort coherent XUV pulses by harmonic conversion of intense laser pulses in gases: Towards attosecond pulses, *Meas. Sci. Technol.*, 2001, **12**, 1818–1827.
- 12 I. J. Sola, A. Zaïr, R. López-Martens, P. Johnsson, K. Varjú, E. Cormier, J. Mauritsson, A. L'Huillier, V. Strelkov, E. Mével and E. Constant, Temporal and spectral studies of high-order harmonics generated by polarization-modulated infrared fields, *Phys. Rev. A - At. Mol. Opt. Phys.*, 2006, **74**, 013810.