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Ⅰ. Computational details.
The total EPC constant λ is obtained via isotropic Eliashberg function [1–3]:
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where α2F(ω) is Eliashberg function and N(EF) is the DOS at the Fermi level, ωqν is the 
phonon frequency of the νth phonon mode with wave vector q, and γqν is the phonon 
linewidth [1–3]. The γqν can be estimated by:
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where ΩBZ is the volume of the Brillouin zone (BZ), εkn and εk+qm indicate the Kohn-
Sham energy, and gν

kn,k+qm represents the screened electron-phonon matrix element. 
λqν is the EPC constant for phonon mode qν, which is defined as:
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Tc is estimated by the Allen-Dynes modifified McMillan equation [3]:
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The hysteretic Coulomb pseudopotential µ* in Eq. (5) is set to 0.1 and logarithmic 
average of the phonon frequencies ωlog is defined as:
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Ⅱ. The crystal structure of Ca-intercalated AB-stacking bilayer 

graphene C2CaC2.
The lattice structure of calcium intercalated AB-stacking bilayer graphene C2CaC2 is 
shown in Fig. S1. After full optimization, the lattice parameter is 2.59 Å, which is 
slightly smaller than that of the AA-stacking C2CaC2. The height between the two 
graphene layers is 5.294 Å, slightly larger than that of the AA-stacking C2CaC2. When 
calculating its stability, we find that its phonon dispersion has no imaginary 
frequencies, as shown in Fig. S2, indicating dynamic stability. However, during the 
subsequent verification of thermodynamic stability, it gradually changed to AA-
stacking with lower system energy, as shown in Fig. S3. 

FIG. S1 (a) Top (a) and side (b) views of Ca-intercalated AB-stacking bilayer graphene 
C2CaC2. The unit cell is shown by the black solid line. Carbon, calcium atoms are 
represented by brown and blue spheres, respectively.

FIG. S2 Phonon dispersion for the AB-stacking C2CaC2. 



FIG. S3 The variation of the free energy in the AIMD simulations in the time scale of 
6 ps along with the last frame of photographs at 50 K for the AB-stacking C2CaC2.



III. The calculated phonon dispersion of C2CaC2 in the case of biaxial 

strain with ε = -7%, 11%.
In the case of different strained cases applied to the structure, we find that with ε = -7% 
and 11% of C2CaC2, the structure begins to show dynamic instability. As is shown in 
Fig. S4, the phonon dispersion exhibits imaginary frequencies.

FIG. S4 Phonon dispersion of C2CaC2 in the case of biaxial strain with ε = 11% and
-7%.



IV. The Tc of pristine calcium intercalated AA-stacking bilayer 

graphene C2CaC2 and biaxial compressive strained C2CaC2 as a 

function of Coulomb pseudopotential μ∗.
It is well known that the Coulomb pseudopotential μ* is an empirical parameter which 
is closely associated with Tc. The calculated Tc of pristine calcium intercalated AA-
stacking bilayer graphene C2CaC2 and biaxial tensile strained C2CaC2 as a function of 
μ* is shown in Fig. S5. The value of μ* is considered in the range of 0.05–0.20. As is 
seen in Fig. S5, the Tc decreases monotonically with the increasing of μ* for both 
pristine C2CaC2 and biaxial tensile strained C2CaC2. As μ* increases from 0.05 to 0.20, 
Tc decreases from 26.3 K, 28.6 K, 32.2 K to 7.1 K, 10.3 K, 16.1 K for the pristine, -2% 
and -4% compressive strained cases, respectively. For the commonly used μ* = 0.10, 
the Tc for the pristine, -2% and -4% compressive strained cases are 18.9 K, 21.9 K and 
26.6 K, respectively, which are listed in Table 1 of the main text. 

FIG. S5: The calculated Tc of pristine calcium intercalated AA-stacking bilayer 
graphene C2CaC2 and biaxial tensile strained C2CaC2 as a function of Coulomb 
pseudopotential μ*. The vertical line marks the value of μ* = 0.10 used in the main 
text.



V. The λ and Tc as a function of degauss for different k 

meshes and q meshes for pristine C2CaC2.

The convergence of Tc is consistent with the convergence of the EPC λ, which should 
satisfy two requirements: (1) λ/Tc should converge with respect to the k mesh and q 
mesh, that is, for a dense enough k mesh and q mesh, the λ vs degauss curve should 
become overlap. (2) λ/Tc should also converge with degauss (the smearing width in the 
EPC calculation). We should find the degauss at which λ/ Tc becomes relatively flat, 
and the results at this degauss should be chosen as the convergence data. To test the 
convergence of the λ and Tc of pristine C2CaC2, we plot the curves for λ and Tc under a 
series of degauss with k meshes of 24 × 24 × 1, 32 × 32 × 1, and 48 × 48 × 1 and 
corresponding q meshes of 4 × 4 × 1, 8 × 8 × 1, and 12 × 12 × 1, which are shown by 
the black, red, and blue lines with squares, dots, and triangles in Fig. S6. From Figs. 
S6(a) and S6(b), we can find the following results: (1) Using different k meshes and q 
meshes, the corresponding λ basically converges at k mesh of 48 × 48 × 1 and the 
corresponding q mesh of 12 × 12 × 1. (2) The Tc also converges at this k mesh and q 
mesh, and the Tc vs degauss curve becomes relatively flat at degauss of 0.015 Ry, with 
a corresponding Tc of 18.9 K. Thus, the k mesh and q mesh used in this work is 
converged for the calculation of Tc.

Fig. S6: λ(a) and Tc (b) as a function of degauss for different k meshes and q meshes 
for pristine C2CaC2.



VI. The phonon spectrum corresponding to different smearing 

parameter for pristine C2CaC2.

Using Methfessel-Paxton smearing method for the electronic charge density 
calculations, it is important to select critical smearing parameter as it significantly 
impacts the imaginary phonon modes. In addition to the 0.02 parameter used in the 
paper, we also calculated the phonon dispersion for parameters 0.01 and 0.03 and found 
no imaginary frequency. Figs. S7(a) and S7(b) represent phonon spectra with 
parameters 0.01 and 0.03, respectively.

Fig. S7: The phonon dispersion with smearing parameters 0.01 (a) and 0.03 (b) of 
pristine C2CaC2.



VII. Electron localization function (ELF) of pristine C2CaC2.

The ELF value ranges from 0 to 1. Generally, 0 indicates very low electron density, 0.5 
indicates homogeneity of electron gas, and 1 indicates strong covalent bonding or lone 
pair electrons. The 2D maps of ELF for C2CaC2 are shown in Fig. S8. The ELF value 
between C and Ca is almost zero, indicating a very low electron density as shown in 
Fig. S8(a). That suggested ionic bond between C and Ca atoms. Fig. S8(b) suggested 
covalent bonds between C atoms.

Fig. S8: 2D maps of ELF for C2CaC2. 
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